「JSOI2010」汇总

「JSOI2010」旅行

传送门
比较妙的一道 \(\text{DP}\) 题,思维瓶颈应该就是如何确定状态。
首先将边按边权排序。
如果我们用 \(01\) 串来表示 \(m\) 条边是否在路径上,那么我们就可以通过钦定前 \(x\) 条边在路径上来确定目标状态。
其中有的边消耗了魔法使用次数,有的没消耗。
那么我们就可以设 \(dp[i][j][k]\) 表示到点 \(i\) ,经过了前 \(j\) 条被钦定边,并且使用了 \(k\) 次魔法的最短路,那么转移就是(假设我们现在要从点 \(u\) 走到点 \(v\)):
如果当前这条边是被钦定的边:\(dp_{u, j, k} + w_{j + 1} \to dp_{v, j + 1, k}\)
如果当前这条边不是被钦定的边:

  • 用魔法:\(dp_{u, j, k} + w_{j + 1} \to dp_{v, j + 1, k + 1}\)
  • 不用魔法:\(dp_{u, j, k} + dis(u, v) \to dp_{v, j, k}\)

参考代码:

#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline void read(T& s) {
    s = 0; int f = 0; char c = getchar();
    while ('0' > c || c > '9') f |= c == '-', c = getchar();
    while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
    s = f ? -s : s;
}

const int _ = 52, __ = 152;

int n, m, k, ans = 2147483647; vector < int > vec[_];

struct node { int u[2], w; } p[__];
inline bool cmp(const node& x, const node& y) { return x.w < y.w; }

struct DP { int i, j, k; } ;

inline void calc(int x) {
    static queue < DP > Q;
    static int exi[_][__][_], dp[_][__][_];
    memset(dp, 0x3f, sizeof dp);
    dp[1][0][0] = 0, Q.push((DP) { 1, 0, 0 });
    while (!Q.empty()) {
        DP u = Q.front(); Q.pop(), exi[u.i][u.j][u.k] = 0;
        for (rg int i = 0; i < vec[u.i].size(); ++i) {
            int id = vec[u.i][i], v = p[id].u[u.i == p[id].u[0]];
            if (id <= x) {
                if (dp[v][u.j + 1][u.k] > dp[u.i][u.j][u.k] + p[u.j + 1].w && u.j < x) {
                    dp[v][u.j + 1][u.k] = dp[u.i][u.j][u.k] + p[u.j + 1].w;
                    if (!exi[v][u.j + 1][u.k]) exi[v][u.j + 1][u.k] = 1, Q.push((DP) { v, u.j + 1, u.k });
                }
            } else {
                if (dp[v][u.j + 1][u.k + 1] > dp[u.i][u.j][u.k] + p[u.j + 1].w && u.j < x && u.k < k) {
                    dp[v][u.j + 1][u.k + 1] = dp[u.i][u.j][u.k] + p[u.j + 1].w;
                    if (!exi[v][u.j + 1][u.k + 1]) exi[v][u.j + 1][u.k + 1] = 1, Q.push((DP) { v, u.j + 1, u.k + 1 });
                }
                if (dp[v][u.j][u.k] > dp[u.i][u.j][u.k] + p[id].w) {
                    dp[v][u.j][u.k] = dp[u.i][u.j][u.k] + p[id].w;
                    if (!exi[v][u.j][u.k]) exi[v][u.j][u.k] = 1, Q.push((DP) { v, u.j, u.k });
                }
            }
        }
    }
    for (rg int i = 0; i <= k; ++i) ans = min(ans, dp[n][x][i]);
}

int main() {
#ifndef ONLINE_JUDGE
    file("cpp");
#endif
    read(n), read(m), read(k);
    for (rg int u, v, w, i = 1; i <= m; ++i) read(u), read(v), read(w), p[i] = (node) { u, v, w };
    sort(p + 1, p + m + 1, cmp);
    for (rg int i = 1; i <= m; ++i) vec[p[i].u[0]].push_back(i), vec[p[i].u[1]].push_back(i);
    for (rg int i = 0; i <= m; ++i) calc(i);
    printf("%d\n", ans);
    return 0;
}

原文地址:https://www.cnblogs.com/zsbzsb/p/12244368.html

时间: 2024-11-10 17:25:43

「JSOI2010」汇总的相关文章

「JSOI2011」汇总

「JSOI2011」柠檬 斜率优化题. 在优化前,还有一个值得一提的优化: 对于最后的最有分割方案,每一段的两个端点一定是同颜色的,并且作为这一段的 \(s_0\) 证明:如果不作为这一段的 \(s_0\),那么它显然没有贡献,把这一个单独分出来显然更优,直到最后两个端点就一定都是 \(s_0\) ,颜色相同. 那么我们只需要从之前和该点种类相同的位置进行转移即可. 这样就从直接枚举的复杂度 \(O(n^3)\) 优化到了 \(O(n^2)\) ,但还是不够,继续考虑优化. 我们先把转移方程写出

大数据和「数据挖掘」是何关系?---来自知乎

知乎用户,互联网 244 人赞同 在我读数据挖掘方向研究生的时候:如果要描述数据量非常大,我们用Massive Data(海量数据)如果要描述数据非常多样,我们用Heterogeneous Data(异构数据)如果要描述数据既多样,又量大,我们用Massive Heterogeneous Data(海量异构数据)--如果要申请基金忽悠一笔钱,我们用Big Data(大数据) 编辑于 2014-02-2817 条评论感谢 收藏没有帮助举报作者保留权利 刘知远,NLPer 4 人赞同 我觉得 大数据

AC日记——「HNOI2017」单旋 LiBreOJ 2018

#2018. 「HNOI2017」单旋 思路: set+线段树: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 100005 #define maxtree maxn<<2 int val[maxtree],tag[maxtree],L[maxtree],R[maxtree],mid[maxtree]; int op[maxn],ki[maxn],bi[maxn],cnt,size,n,ch[maxn]

「随笔」基于当下的思考

马德,说好的技术blog,变成日记本了... 下午的时候莫名其妙的感到很颓废,因为自己的不够强大感到忧虑和危机感十足.现在每每行走在技术的道路上,常觉得如履薄冰,如芒在背. 上大学之前和现在的心态其实差别挺大的,视野的开阔远远不止局限于自己的脚下.不过,这里的「上大学之前」只是一个时间描述词,并不觉得大学是最适合学习的地方,我很失望. 世界上的人无论性别,区域,宗教,兴趣爱好,总可以在互联网上找到志趣相同的人,总是可以不断打破自己的常识与惯性思维.总是有在相同领域比自己更强的人,挺好的. 关于知

「Unity」与iOS、Android平台的整合:3、导出的Android-Studio工程

本文属于「Unity与iOS.Android平台的整合」系列文章之一,转载请注明出处. Unity默认导出的是Android-Eclipse工程,毕竟Eclipse for Android开发在近一两年才开始没落,用户量还是非常巨大的. 个人认为AndroidStudio非常好用,能轻易解决很多Eclipse解决不了或者很难解决的问题. 所以我将Unity导出的Andoid工程分为Eclipse和AndroidStudio两部分. 不过我之后的相关内容都会使用AndroidStudio,希望依然

开放的智力8:实用「成功学」

可实现的「成功学」 现在我想为这里的年轻人介绍一种可实现的「成功学」.希望这个我自创的理论,可以改变很多人的一生. 当我们评价一个事情值不值得去做.应该花多少精力去做的时候,应该抛弃单一的视角,而是分两个不同的维度来看,一是该事件将给我带来的收益大小(认知.情感.物质.身体方面的收益皆可计入),即「收益值」:二是该收益随时间衰减的速度,我称为「收益半衰期」,半衰期长的事件,对我们的影响会持续得较久较长. 这两个维度正交以后就形成了一个四象限图.我们生活.学习和工作中的所有事情都可以放进这个图里面

Linux 小知识翻译 - 「syslog」

这次聊聊「syslog」. 上次聊了「日志」(lgo).这次说起syslog,一看到log(日志)就明白是怎么回事了.syslog是获取系统日志的工具. 很多UINIX系的OS都采用了这个程序,它承担了「获取系统全部的日志」这个维持系统正常运行的重要任务. syslog的本体是「syslogd」这个daemon(一般翻译成守护进程),常驻内存中获取日志. syslog的特点是可以通过配置文件「/etc/syslog.conf」,对「哪种应用程序?哪种重要度的信息?记录在哪个文件中?」等进行细致的

Linux 小知识翻译 - 「日志」(log)

这次聊聊「日志」. 「日志」主要指系统或者软件留下的「记录」.出自表示「航海日志」的「logbook」. 经常听说「出现问题的时候,或者程序没有安装自己预期的来运行的时候,请看看日志!」. 确实,记录了系统和软件详细运行情况的「日志」是信息的宝库,通过日志来解决问题的事例也非常多. 但事实上,「无论如何也不会看日志」的用户也有很多.理由很简单,日志的信息量非常大,全部用眼睛来看的话是非常吃力的. 而且,英语写的日志也会让英文不好的人敬而远之. 虽说「要养成用眼睛来看日志的习惯」,但实行起来却非常

Linux 小知识翻译 - 「补丁」(patch)

这次,聊聊补丁. 当有bug或者安全漏洞的时候,就会发布补丁.打上补丁之后,就能解决相应的bug或者安全漏洞. 那么,「补丁」到底是什么呢? 「补丁」只有少量的代码,一般都是对程序的一部分进行更新或者追加,包括bug修正,安全漏洞修正,功能追加或者变更等等.当然,只有「补丁」是无法运行的. 即,只有将「补丁」附加到原来的程序中,更新原来的程序后,才能运行. 「补丁(patch)」本来是指「打补丁用的小布头」.「patch」正是为了补足现有的程序,堵住程序漏洞的「布头」. 打「补丁」的时候需要用到