Maximum Entropy Model(最大熵模型)初理解

1,简单概率知识理解

1.1 随机变量(random variable)

表示随机现象(在一定条件下,并不总是出现相同结果的现象称为随机现象)各种结果的实值函数(一切可能的样本点)。如掷一颗骰子,它的所有可能结果是出现1点、2点、3点、4点、5点和6点 ,若定义X为掷一颗骰子时出现的点数,则X为一随机变量。随机变量   X∈{1,2,3,4,5,6}。

时间: 2024-10-17 18:48:20

Maximum Entropy Model(最大熵模型)初理解的相关文章

最大熵模型 Maximum Entropy Model

熵的概念在统计学习与机器学习中真是很重要,熵的介绍在这里:信息熵 Information Theory .今天的主题是最大熵模型(Maximum Entropy Model,以下简称MaxEnt),MaxEnt 是概率模型学习中一个准则,其思想为:在学习概率模型时,所有可能的模型中熵最大的模型是最好的模型:若概率模型需要满足一些约束,则最大熵原理就是在满足已知约束的条件集合中选择熵最大模型.最大熵原理指出,对一个随机事件的概率分布进行预测时,预测应当满足全部已知的约束,而对未知的情况不要做任何主

最大熵模型原理小结

最大熵模型(maximum entropy model, MaxEnt)也是很典型的分类算法了,它和逻辑回归类似,都是属于对数线性分类模型.在损失函数优化的过程中,使用了和支持向量机类似的凸优化技术.而对熵的使用,让我们想起了决策树算法中的ID3和C4.5算法.理解了最大熵模型,对逻辑回归,支持向量机以及决策树算法都会加深理解.本文就对最大熵模型的原理做一个小结. 1. 熵和条件熵的回顾 在决策树算法原理(上)一文中,我们已经讲到了熵和条件熵的概念,这里我们对它们做一个简单的回顾. 熵度量了事物

统计学习方法 李航---第6章 逻辑回归与最大熵模型

第6章 逻辑回归与最大熵模型 逻辑回归(logistic regression)是统计学习中的经典分类方法.最大嫡是概率模型学习的一个准则将其推广到分类问题得到最大熵模型(maximum entropy model).逻辑回归模型与最大熵模型都属于对数线性模型. 6.1 逻辑回归模型 定义6.1(逻辑分布):设X是连续随机变量,X服从逻辑斯谛分布是指 X具有下列分布函数和密度函数 式中,u为位置参数,r>0为形状参数. 逻辑分布的密度函数f(x)和分布函数F(x)的图形如图所示.分布函数属于逻辑

第六章 logistic回归与最大熵模型

1.logistic回归是统计学习中的经典分类方法. 最大熵模型:最大熵是概率模型学习的一个准则,将其推广到分类问题得到最大熵模型. 两者都是对数线性模型. 2.二项logstic分类模型:用于二类分布. 多项logstic分类模型:用于多类分布. 3.最大熵模型(maximum entropy model):是由最大熵原理推导实现. 4.熵最大原理:学习概率模型时,在所有可能的概率模型(分布)中,熵最大的模型是最好的模型. 5.当X服从均匀分布时,熵最大. 6.改进的迭代尺度法(improve

逻辑斯谛回归,softmax回归与最大熵模型

逻辑斯谛回归(logistic regression)是统计学习中的经典分类方法 最大熵是概率模型学习的一个准则,被推广到分类问题后可得到最大熵模型(Maximum Entropy Model) 逻辑斯谛回归模型与最大熵模型都属于对数线性模型,而对数线性模型又是广义线性模型的一种. 科普一下:狭义的线性模型是指 自变量的线性预测 就是 因变量的估计值, 而广义的线性模型是指 自变量的线性预测的函数 是 因变量的估计值. 逻辑斯谛回归 逻辑斯蒂分布 logistic distribution,设X

统计学习六:2.对数线性模型之最大熵模型

全文引用自<统计学习方法>(李航) 最大熵模型(maximum entropy model)同样是一类对数线性模型,主要由最大熵原理推导得出.本文主要介绍最大熵原理的基本概念.最大熵模型的推导过程以及模型的学习形式. 1.最大熵原理 最大熵原理是概率模型学习的一个准则.具体表现为,在给定多个约束条件之后,对于所有满足约束条件的概率模型所组成的集合,熵最大的模型一定是最好的模型,此时应选择该模型为最终模型. 假定离散随机变量X的概率分布为P(X),则其熵为: \[ H(P)=-\sum_xP(x

最大熵模型

我的理解:在限制的条件下,根据已知情况求解未知情况,最优解的选择就是使得未知的熵最大的那个概率 我们在投资时常常讲不要把所有的鸡蛋放在一个篮子里,这样可以降低风险.在信息处理中,这个原理同样适用.在数学上,这个原理称为最大熵原理(the maximum entropy principle). 让我们看一个拼音转汉字的简单的例子.假如输入的拼音是"wang-xiao-bo",利用语言模型,根据有限的上下文(比如前两个词),我们能给出两个最常见的名字"王小波"和&quo

最大熵学习笔记(三)最大熵模型

  生活中我们经常听到人们说"不要把鸡蛋放到一个篮子里",这样可以降低风险.深究一下,这是为什么呢?其实,这里边包含了所谓的最大熵原理(The Maximum Entropy Principle).本文为一则读书笔记,将对最大熵原理以及由此导出的最大熵模型进行介绍,重点给出其中所涉及数学公式的理解和详细推导. 相关链接 最大熵学习笔记(零)目录和引言 最大熵学习笔记(一)预备知识 最大熵学习笔记(二)最大熵原理 最大熵学习笔记(三)最大熵模型 最大熵学习笔记(四)模型求解 最大熵学习笔

3月机器学习在线班第六课笔记--信息熵与最大熵模型

原文:https://www.zybuluo.com/frank-shaw/note/108124 信息熵 信息是个很抽象的概念.人们常常说信息很多,或者信息较少,但却很难说清楚信息到底有多少.比如一本五十万字的中文书到底有多少信息量.直到1948年,香农提出了“信息熵”的概念,才解决了对信息的量化度量问题.(百度百科) 香农定义的信息熵的计算公式如下: H(X)=−∑p(xi)log(p(xi))    (i=1,2,…,n) 其中X 表示的是随机变量,随机变量的取值为(x1,x2,…,xn)