舆论的力量---数学建模初探(SI模型)

在高中时除了物理竞赛没有学习外,竞赛的五大学科剩下的四门均有所涉猎及参加,因而精力分散太多。因此下定决心大学时可以广泛涉猎知识,但是主攻的竞赛只能有两个ACM和MCM,如今虽然高考完挂,但学术之心尚存,而SIR模型对我来说便是数学海洋中的一块拾贝
舆论的力量一向是被政府所重视的,所以在战时拥有自己的电台,掌握说话权是相当的重要。对于商人,他们希望他们促销打折的消息迅速的传播,同样对于普通百姓来说,家长里短,一个消息的传播往往是复杂而多变的,因此研究消息传播的一般规律显得尤为重要。现在我们迫切想知道一般来说对于一个消息,经过一段时间后能够有多少人得到它?
为方便讨论,做如下假设:初始时知道这个消息的人数为P0,经过时间t后知道这个消息的人数为f(t)。
我们先猜想下f(t)会有些什么性质?首先它是递增的---短期内如果不是患上阿尔兹海默症的人群的话,知道一个消息的人数只可能越来越多。其次可以预计当t趋向于正无穷时f(t)将会趋于一个定值---全人类的数目是有限的,当时间过得越长,消息的扩散也就趋于饱和,
尝试建立模型,假设每人单位时间内会接触k个人并将消息准确传播给这k个人,那么在△t内知道这一消息增加的人数为f(t+△t)-f(t),它又等于t时刻知道这一消息的所有人在△t这段时间内传播的人数,即可列出方程:f(t+△t)-f(t)=kf(t)* △t
由f(t+△t)≈f(t)+f’(t)* △t将上式改写成微分方程:df/dt =kf(t)
该方程属于可分离变量型,容易求出通解为f(t)=C*e^(kt)将f(0)=P0代入求出特解为:f(t)=P0*e^(kt)
突然我们发现,花了那么大力气竟然求出来一个无界的函数!!分析过程的每一步,我们发现,问题出在f(t)个人单位时间接触的k个人除了不知道这个消息的人外还有已经知道这个消息的即f(t)中的人,这就迫使我们另辟蹊径,即本文的主题SI模型。
设消息受众的总人数为N(例如某市百货商场打折这一消息的N就是该市的总人数)f(t)不再表示t时刻知道消息的人数,而是t时刻知道消息的人数占总人数N的比率,所以此时知道消息的人数表示成N*f(t),而不知道该消息的人数为N*(1-f(t)),这样建模的好处便是我们顺利分出了知道消息的人与不知道消息的人, 每人每天接触的k人里有k*f(t)是以前听过消息的,k*(1-f(t))人是以前没听过消息的
k的意义如前所述,因此在△t时间内知道该消息增加了N*[f(t+△t)-f(t)],类似于上面一个模型的讨论,只是k变成了k*(1-f(t)),f(t)成了N*f(t)得到:
N*[f(t+△t)-f(t)]=[k*(1-f(t))]*[ N*f(t)]* △t
对上式进行同样的处理得到微分方程:df/dt=k*[1-f(t)]*f(t)
等等这个微分方程怎么那么像混沌里面的虫口模型的方程?没错这个就是著名的逻辑蒂斯方程,只是在研究混沌现象时我们研究它的离散形式也就是差分方程,而这里我们研究的是微分方程,本质上是一样的。顺便一提,还记得高中生物书上说当种群没有受到食物,空间等因素的制约时是J型曲线,反之是S型曲线么?J型曲线对应的便是上面一个模型 ,而S型曲线即对应这里的逻辑蒂斯方程
这个微分方程是有解析解的,并且仍然属于可分离变量型的。结果很容易求,但由于百度空间传图不方便,自行脑补吧
然后就是这个模型最初的建立不是研究消息的传播,而是传染病的传播,因此除了SI模型外还有SIS(可治愈并被再次感染)SIR(可治愈并获得免疫不再被感染),其中SIR模型的微分方程无解析解,因此得用maltab进行分析,当然也可以用欧拉法自行画出微分方程的图。如今相关模型已经成为一门系统的学科即传染病动力学。
时间: 2024-10-02 20:41:43

舆论的力量---数学建模初探(SI模型)的相关文章

数学建模 数学模型 GM模型 灰色模型 灰色预测(一)

灰色模型能够有效地进行预测 , 尤其是在数据比较模糊的时候 , 比如预测什么时候下雨 , 先讲解一个简单并且最常用的GM模型 GM(1,1) 生成列 设原始时间序列为x1(t) t为时间t=0,1,2,3-.. , 生成列x0(t)就是原始序列的差分 即 任取t>=1 有: x0(t)=x1(t)-x1(t-1) 紧邻均值列 顾名思义 , 就是取平均值. z1=0.5*x1(t) + 0.5*x1(t-1) GM(1,1)模型 其实 生成列就是原始序列的导数即: x1(t)'=x0(t) =x1

【数学建模】创意平板折叠桌的模型分析与优化设计

? ? 创意平板折叠桌的模型分析与优化设计 魏淙铭 陈星曼 田桃 ? 摘要: 本题要求设计创意折叠桌,问题一给定了具体的长方形平板尺寸.桌高等设计参数求折叠桌的动态变化过程和桌脚边缘线的数学描述,问题二中任意给定桌高和桌面直径求折叠桌的最优设计参数,问题三则要求根据客户提供的桌面边缘线和桌脚边缘线的大致形状给出一款能够确定最优设计参数的软件的数学模型. 本题中,我们以折叠桌桌面中心为圆心,建立空间坐标系求解数学模型. 对于问题一,我们通过使用切片法降低维数来确定桌腿长度.开槽的长度等设计参数,并

数学建模常见模型总结

1. 线性规划问题: 简称LP问题,使用单纯形法进行求解. 如:如何利用现有资源来安排生产,以取得最大经济效益的问题 2. 整数规划 与线性规划类似,分支定界法求解. 3. 非线性规划 如投资类型的0-1规划问题: 4. 动态规划 动态规划(dynamicprogramming)是运筹学的一个分支,是求解多阶段决策问题的最优化方法. 如:最短路等,重在状态的描述,与状态转移方程的列举. 以丰富的想象力去建立模型,用创造性的技巧去求解. 5. 图与网络: 最短路.欧拉回路.以及著名的旅行商问题.运

如何入门参加数学建模竞赛

1 网上资源 1.1 数学中国 可以去数学中国网站看看,在数学建模比赛的培训这一块做得很好的机构,如果自己有点银子,可以去参加他们的网上课程.另外他们有专门的数学建模群,群里面有很好关于数学建模的资料.而且这个机构自己也举办数学建模比赛,如果有时候可以在这里组队,直接参加比赛,累积一些经验,增长见识. 1.2 数学建模视频课程,现在网络上有一些比较好的关于数学建模比赛的视频资源,可以谷歌一下 1.3 网络上的一些关于数学建模的电子书,有时候你也不知道哪本书比较适合你,所以你可以先在网上找一些电子

数学建模需掌握的知识总纲

数学建模需要掌握许多知识,这里我列出总纲: 学建模中的算法 穷举法 神经网络 模拟退火 遗传算法 图论算法 蒙特卡洛算法 所需基础知识 高等数学 线性代数(矩阵加减乘除) 概率论与数理统计(概率论,参数估计,假设检验,回归分析) 评价 AHP模型(层次分析) 模糊评价 预测 分析场景 曲线拟合 模糊预测 神经网络 灰色理论 马尔科夫链 运筹 整数规划(分支界定法) 01规划 灵敏度分析 影子价格 概率统计 排队论 主成分分析法 回归分析法 曲线拟合 图论 动态规划 网络最大流 最小费用流 最短路

关于数学建模——入门

数学建模的概念:系统的描述某种本质特征的数学表达式 分类:初等/几何/图论/组合/微分方程/线性规划模型/非线性规划模型/目标规划模型/统计回归模型等... 步骤:建立.求解.分析.检验 Notice:数学建模没有唯一正确的答案,评价模型优劣的标准是实践. Model+Algorithm+Program=Map(映射) 数学建模论文的结构: 1.title: 2.summary:3.restatement of the problem(问题引言):4.analysis of the proble

数学建模竞赛“爱你不容易,爱你不后悔”

2011年6月份高中毕业,就读本科,2013年暑假8月份,参加学校为期一个月的数学建模培训,然后9月份的第二个周末在东南大学参加为期三天的全国大学生数学建模竞赛,"意外"获得全国大学生数学建模竞赛二等奖:2015年6月份本科毕业,攻读硕士研究生,2016年暑假,因实习没有参加学校组织的数学建模培训,9月份的第三个周末在南京邮电大学参加为期4.5天的全国研究生数学建模竞赛,"如愿"获得全国研究生数学建模竞赛一等奖,随后在重庆大学参加"华为杯"第十三

数学建模比赛论文的基本结构

一.常用的三种结构 一 二 三 1.摘要 1.摘要 1.摘要 2.问题重述 2.问题的提出与重述.问题的分析 2.问题的叙述.背景的分析 3.问题的分析 3.变量假设 3.模型的假设.符号说明 4.模型假设 4.模型建立 4.模型建立 5.符号说明 5.模型求解 5.模型求解 6.模型建立 6.模型分析与检验 6.模型检验 7.模型求解 7.模型的评价与推广 7.模型评价 8.结果分析.验证.模型检验及修正 8.参考文献 8.参考文献 9.模型评价 9.附录 9.附录 10.参考文献     1

【数学建模的五步方法】

第一步,提出问题. ·列出问题中涉及的变量,包括适当的单位. ·注意不要混淆变量的常量. ·列出你对变量所做的全部假设,包括等式和不等式. ·检查单位从而保证你的假设有意义. ·用准确的数学术语给出问题的目标. 第二步,选择建模方法. ·选择结局问的一个一般的求解方法. ·一般地,这一步的成功需要经验.技巧和熟悉相关文献. 第三步,推导模型的数学表达式.·将第一步中得到的问题重新表达成第二步选定额建模方法所需要的形式. ·你可能需要将第一步中的一些变量名改成与第二步所用的记号一致.·记下任何补充