HDU 4968 Improving the GPA 多校第九场1009

Problem Description

Xueba: Using the 4-Point Scale, my GPA is 4.0.

In fact, the AVERAGE SCORE of Xueba is calculated by the following formula:

AVERAGE SCORE = ∑(Wi * SCOREi) / ∑(Wi) 1<=i<=N

where SCOREi represents the scores of the ith course and Wi represents the credit of the corresponding course.

To simplify the problem, we assume that the credit of each course is 1. In this way, the AVERAGE SCORE is ∑(SCOREi) / N. In addition, SCOREi are all integers between 60 and 100, and we guarantee that ∑(SCOREi) can be divided by N.

In SYSU, the university usually uses the AVERAGE SCORE as the standard to represent the students’ level. However, when the students want to study further in foreign countries, other universities will use the 4-Point Scale to represent the students’ level. There
are 2 ways of transforming each score to 4-Point Scale. Here is one of them.

The student’s average GPA in the 4-Point Scale is calculated as follows:
GPA = ∑(GPAi) / N

So given one student’s AVERAGE SCORE and the number of the courses, there are many different possible values in the 4-Point Scale. Please calculate the minimum and maximum value of the GPA in the 4-Point Scale.

Input

The input begins with a line containing an integer T (1 < T < 500), which denotes the number of test cases. The next T lines each contain two integers AVGSCORE, N (60 <= AVGSCORE <= 100, 1 <= N <= 10).

Output

For each test case, you should display the minimum and maximum value of the GPA in the 4-Point Scale in one line, accurate up to 4 decimal places. There is a space between two values.

Sample Input

4
75 1
75 2
75 3
75 10

Sample Output

3.0000 3.0000
2.7500 3.0000
2.6667 3.1667
2.4000 3.2000

Hint

In the third case, there are many possible ways to calculate the minimum value of the GPA in the 4-Point Scale.
For example,
Scores 78 74 73 GPA = (3.0 + 2.5 + 2.5) / 3 = 2.6667
Scores 79 78 68 GPA = (3.0 + 3.0 + 2.0) / 3 = 2.6667
Scores 84 74 67 GPA = (3.5 + 2.5 + 2.0) / 3 = 2.6667
Scores 100 64 61 GPA = (4.0 + 2.0 + 2.0) / 3 = 2.6667

贪心加暴力,贪心就是 求最大值时只要取分数的下界,最小值只取上界,然后直接暴力枚举每个边界的个数,判断是否合法,更新答案。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <set>
#include <stack>
#include <cctype>
#include <algorithm>
#define lson o<<1, l, m
#define rson o<<1|1, m+1, r
using namespace std;
typedef long long LL;
const int mod = 99999997;
const int MAX = 0x3f3f3f3f;
const int maxn = 100005;
const int N = 100005;
int t, n, av, tot;
bool check1(int i1, int i2, int i3, int i4, int i5) {
    if(i5 < 0) return false;
    int ans = i1*85 + i2*80 + i3*75 + i4*70 + i5*60;
    if(ans <= tot) return true;
    return false;
}
bool check2(int i1, int i2, int i3, int i4, int i5) {
    if(i5 < 0) return false;
    int ans = i1*100 + i2*84 + i3*79 + i4*74 + i5*69;
    if(ans >= tot) return true;
    return false;
}
double F1(double i1, double i2, double i3, double i4, double i5) {
    return i1*4 + i2*3.5 + i3*3 + i4*2.5 + i5*2;
}

int main()
{
    cin >> t;
    while(t--) {
        cin >> av >> n;
        tot = av*n;
        double ans1 = 10000000000000;
        for(int i1 = 0; i1 <= n; i1++)
            for(int i2 = 0; i1 + i2 <= n; i2++)
                for(int i3 = 0; i1 + i2 + i3 <= n; i3++)
                    for(int i4 = 0; i1 + i2 + i3 + i4 <= n; i4++) {
                        int i5 = n - i1 - i2 - i3 - i4;
                        if(check2(i1, i2, i3, i4, i5)) {
                            double sum = F1(i1, i2, i3, i4, i5);
                            ans1 = min(ans1, sum);
                        }
                    }
        printf("%.4lf ", ans1/n);

        double ans = 0;
        for(int i1 = 0; i1 <= n; i1++)
            for(int i2 = 0; i1 + i2 <= n; i2++)
                for(int i3 = 0; i1 + i2 + i3 <= n; i3++)
                    for(int i4 = 0; i1 + i2 + i3 + i4 <= n; i4++) {
                        int i5 = n - i1 - i2 - i3 - i4;
                        if(check1(i1, i2, i3, i4, i5)) {
                            double sum = F1(i1, i2, i3, i4, i5);
                            ans = max(ans, sum);
                        }
                    }
        printf("%.4lf\n", ans/n);
    }
    return 0;
}



HDU 4968 Improving the GPA 多校第九场1009

时间: 2024-11-05 23:45:49

HDU 4968 Improving the GPA 多校第九场1009的相关文章

hdu 4968 Improving the GPA dp

[题意]:每个成绩范围对应一个绩点,给出平均分avg,课程数n,求能得到的平均绩点的最大值和最小值. [解法]:   d[i][j]表示总分为i 课程数为j时 可以得到的最大的总绩点. 状态转移为: d[i][j]=max(d[i][j],d[i-k][j-1]+d[k][1]);   (60<=k<=100&&i-k>=60*(j-1)) 1 #include<iostream> 2 #include<cstdio> 3 #include<

HDU 4968 Improving the GPA

Problem Description Xueba: Using the 4-Point Scale, my GPA is 4.0. In fact, the AVERAGE SCORE of Xueba is calculated by the following formula: AVERAGE SCORE = ∑(Wi * SCOREi) / ∑(Wi) 1<=i<=N where SCOREi represents the scores of the ith course and Wi

HDU 4968 Improving the GPA(dp)

HDU 4968 Improving the GPA 题目链接 dp,最大最小分别dp一次,dp[i][j]表示第i个人,还有j分的情况,分数可以减掉60最为状态 代码: #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int t, avg, n; double dp1[15][405], dp2[15][405]; double get(int x) { if

hdu 4968 Improving the GPA (水 暴力枚举)

题目链接 题意:给平均成绩和科目数,求可能的最大学分和最小学分. 分析: 枚举一下,可以达到复杂度可以达到10^4,我下面的代码是10^5,可以把最后一个循环撤掉. 刚开始以为枚举档次的话是5^10,但是这个又不要求顺序,所以只是枚举个数就行了.. 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <cmath&g

HDU 4968 Improving the GPA 模拟

最小时就都当69,最大时都当85 .. #include <cstdio> #include <iostream> #include <algorithm> #include <string.h> #include <math.h> #include <vector> #include <map> #include <queue> using namespace std; #define N 5000 int

【瞎搞】HDU 4968 Improving the GPA

枚举一种GPA有多少个 总分1加上该GPA的最小分数 总分2加上该GPA的最大分数 若总分1<=输入分数×n<=总分2 则可以在枚举的状态达到目标分数 #include <stdio.h> #include <string.h> #include <math.h> #include <string> #include <algorithm> using namespace std; #define IN freopen ("

hdu 4968 Improving the GPA(暴力枚举)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4970 Problem Description Xueba: Using the 4-Point Scale, my GPA is 4.0. In fact, the AVERAGE SCORE of Xueba is calculated by the following formula: AVERAGE SCORE = ∑(Wi * SCOREi) / ∑(Wi) 1<=i<=N where S

多校第九场:贪心+矩阵快速幂中间优化+线性递推&amp;线段树递推

HDU 4968 Improving the GPA 思路:贪心的搞吧!比赛的时候想了好久,然后才发现了点规律,然后乱搞1A. 因为贪心嘛!大的情况就是刚开始每个人的分数都是最大的最小值,即绩点4.0的最低分数85,然后最后一个数设为剩余的分数,然后如果小于60就从第一个分数补到这个分数来,然后最后一个分数还小于60,那就用第二个补--依次往下搞,那时我也不知道这样就搞出答案了,我还没证明这个对不对呢,哈哈. 小的情况:小的情况就是先假设每个人都是绩点最小的最大分数,即绩点2.0的最大分数69,

HDOJ 4968 Improving the GPA

枚举... Improving the GPA Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 158    Accepted Submission(s): 126 Problem Description Xueba: Using the 4-Point Scale, my GPA is 4.0. In fact, the AVER