[转]求最大公约数的算法

更相减损术

更相减损术,又称"等值算法"

关于约分问题,实质是如何求分子,分母最大公约数的问题。《九章算术》中介绍了这个方法,叫做”更相减损术”,数学家刘徽对此法进行了明确的注解和说明,是一个实用的数学方法。

例:今有九十一分之四十九,问约之得几何?

我们用(91,49)表示91和49的最大公约数.按刘徽所说,分别列出分子,分母。

“以少减多,更相减损,求其等也,以等数约之,等数约之,即除也,其所以相减者皆等数之重叠,故以等数约之。”

译文如下:

约分的法则是:若分子、分母均为偶数时,可先被2除,否则,将分子与分母之数列在它处,然后以小数减大数,辗转相减,求它们的最大公约数,用最大公约数去约简分子与分母。

其与古希腊欧几里德所著的《几何原本》中卷七第一个命题所论的相同。列式如下:

91 49

42 49

42 7

35 7

28 7

21 7

14 7

7  7

这里得到的7就叫做“等数”,91和49都是这等数的重叠(即倍数),故7为其公约数.而7和7的最大公约数就是7,(7,7)=7,所以(91,49)=(42,7)=(7,7)=7

更相减损术在现代仍有理论意义和实用价值.吴文俊教授说:“在我国,求两数最大公约数即等数,用更相减损之术,将两数以小减大累减以得之,如求24与15的等数,其逐步减损如下表所示:(24,15)->(9,15)->(9,6)->(3,6)->(3,3)

每次所得两数与前两数有相同的等数,两数之值逐步减少,因而到有限步后必然获得相同的两数,也即所求的等数,其理由不证自明。

这个寓理于算不证自明的方法,是完全构造性与机械化的尽可以据此编成程序上机实施”.吴先生的话不仅说明了此法的理论价值,而且指明学习和研究的方向.

更相减损法很有研究价值,它奠定了我国渐近分数,不定分析,同余式论和大衍求一术的理论基础.望能仔细品味。

辗转相除法

辗转相除法,又名欧几里德算法(Euclidean algorithm)乃求两个正整数之最大公因子的算法。它是已知最古老的算法,其可追溯至前300年。它首次出现于欧几里德的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。它并不需要把二数作质因子分解。

证明:

设两数为a、b(b<a),求它们最大公约数(a、b)的步骤如下:用b除a,得a=bq......r1(0≤r)。若r1=0,则(a,b)=b;若r1≠0,则再用r1除b,得b=r1q......r2(0≤r2).若r2=0,则(a,b)=r1,若r2≠0,则继续用r2除r1,……如此下去,直到能整除为止。其最后一个非零余数即为(a,b)。

辗转相除法是利用以下性质来确定两个正整数a和b的最大公因子的:

1.若r是a÷b的余数,则gcd(a,b)=gcd(b,r)

2.a和其倍数之最大公因子为a。

另一种写法是:

1.a÷b,令r为所得余数(0≤r<b)。若r=0,算法结束;b即为答案。

2.互换:置a←b,b←r,并返回第一步。

求最大公约数的C/C++算法

//更相减损法

int gcd(int a,int b)

{

while(a!=b)

{

if(a>b)

a-=b;

else

b-=a;

}

return a;

}

//辗转相除法--递归

int gcd(int a,int b)

{

if(b==0)

returna;

else

return gcd(b,a%b);

}

//辗转相除法--纯循环

int gcd(int a,int b)

{

int r;

while(b!=0)

{

r=a%b;

a=b;

b=r;

}

return a;

}

时间: 2024-10-11 10:55:34

[转]求最大公约数的算法的相关文章

求最大公约数的算法以及最小公倍数

短除法: #include<stdio.h> #include<stdlib.h> int max_approximate(int num1, int num2) { if (num1 > num2) { int tmp = 0; tmp = num1; num1 = num2; num2 = tmp; } int min = num1; while (min) { if ((num2%min == 0)&&(num1%min==0)) { return mi

两非负整数求最大公约数(欧几里德算法)---C/C++

#include<iostream> using namespace std; //欧几里德算法求两个非负整数的最大公约数 int getDivisor(int a,int b) { int max,min; max = a; min = b; //两数中大数模小数,若结果不为0,则舍弃大数 ,把小数和模运算的结果分出大小来,继续取模运算 //依次递归求解,直到模运算结果为0,则此时的小数就是最大公约数 if(max%min!=0){ if(max%min>min) return get

关于C/C++中求最大公约数的算法

1.更相减损法 int gcd(int a,int b) { while(a!=b) { if(a>b) a-=b; else b-=a; } return a; } 2.辗转相除法--递归 int gcd(int a,int b) { if(b==0) return a; else return gcd(b,a%b); } 3.辗转相除法--纯循环 int gcd(int a,int b) { int r; while(b!=0) { r=a%b; a=b; b=r; } return a;

欧几里得求最大公约数

问题:快速求取正整数a,b的最大公约数? 欧几里得算法(又称辗转相除法) 定理:gcd(a,b) = gcd(a,a mod b) 证明:对于任何正整数a,b.如果a>b,都有a=k*b+r  即r=a-k*b =>  r=a mod b. 假设d为a,b的公约数,则a=a1*d,b=b1*d. 而r=a1*d-k*b1*d=(a1-k*b1)*d  =>  d也是r的约数 => d也是(a,r)的公约数 则说明(a,b)的公约数也就是(a,r)的公约数.因此gcd(a,b)=gc

用python实现欧几里德算法求最大公约数

方法1: def gcd(x, y):   while n:       x, y = y, x % y   return x 方法2: def yue(x,y):      if y:              return gcd(y,x%y)      else:            return x 用python实现欧几里德算法求最大公约数,布布扣,bubuko.com

【算法】欧几里德算法--求最大公约数

预备知识 因子(除数) 如果有整数 n,a,b .a和b都不为0 ,且 有 n = a*b ,则说a(或者b,以下省略说明)为n的一个因子,或者说a能整除n. 特别的:任何非0整数都是0的因子,所以一般我们不会去求0的因子. 如:3 的因子有  1, -1 ,  3 ,  -3 .然而我们一般只考虑正数因子,因为负数因子和正数因此没有本质上的区别,只是符号不同而已. 素数:素数(也加叫质数)的定义是,如果整数p的因子 只有 ±1 和   ±p,则它就是素数 .特别的:0 和1既不是素数,也不是合

[算法]求满足要求的进制(辗转相除(欧几里得算法),求最大公约数gcd)

题目 3在十进制下满足若各位和能被3整除,则该数能被3整除. 5在十六进制下也满足此规律. 给定数字k,求多少进制(1e18进制范围内)下能满足此规律,找出一个即可,无则输出-1. 题解 写写画画能找到规律,即是求与k互质的数x,x进制下即能满足上述规律. 相关 求最大公约数:辗转相除法(又叫欧几里得算法) 欧几里德定理:gcd(a, b) = gcd(b , a mod b) ,对于正整数a.b. 其中a.b大小无所谓.当a值小于b值时,算法的下一次递归调用就能够将a和b的值交换过来. 代码

欧几里德算法求最大公约数

求最大公约数有暴力法和辗转相除法 时间复杂度 暴力:O(N) 辗转相除法:O(2logN) 辗转相除法原理: 设c为A B 的最大公约数 则存在K1 K2 使 A=K1*c B=K2*c; r为A模B r=A - K3*B; r=K1*c-K3*k2*c; r=(K1-K2*K3)*c; 所以A 和 B 的余数一定是最大公约数c的倍数 1 #include <stdio.h> 2 3 int gcd(int a, int b) 4 { 5 int temp, r; 6 if(a<b) 7

求最大公约数 和 最小公倍数 常见算法

#include <stdio.h>int main(){ int a,b,t,c,m,n; scanf("%d%d",&a,&b); m=a; n=b; //1.辗转相除法求最大公约数 /*while(b!=0) { c = a%b; a = b; b = c; } printf("最大公约数: %d\n",a);//最大公约数 printf("最小公倍数: %d\n",m*n/a);//最小公倍数 */ //2.相