PCB板产生EMI的原理以及如何抑制

随着IC 器件集成度的提高、设备的逐步小型化和器件的速度愈来愈高,电子产品中的EMI问题也更加严重。从系统设备EMC /EMI设计的观点来看,在设备的PCB设计阶段处理好EMC/EMI问题,是使系统设备达到电磁兼容标准最有效、成本最低的手段。本文介绍数字电路PCB设计中的EMI控制技术。1 EMI的产生及抑制原理
EMI的产生是由于电磁干扰源通过耦合路径将能量传递给敏感系统造成的。它包括经由导线或公共地线的传导、通过空间辐射或通过近场耦合三种基本形式。EMI的危害表现为降低传输信号质量,对电路或设备造成干扰甚至破坏,使设备不能满足电磁兼容标准所规定的技术指标要求。

为抑制EMI,数字电路的EMI设计应按下列原则进行:
●根据相关EMC/EMI技术规范,将指标分解到单板电路,分级控制。
●从EMI的三要素即干扰源、能量耦合途径和敏感系统这三个方面来控制,使电路有平坦的频响,保证电路正常、稳定工作。
●从设备前端设计入手,关注EMC/EMI设计,降低设计成本。

2 数字电路PCB的 EMI控制技术
在处理各种形式的EMI时,必须具体问题具体分析。在数字电路的PCB设计中,可以从下列几个方面进行EMI控制。

2.1 器件选型

在进行EMI设计时,首先要考虑选用器件的速率。任何电路,如果把上升时间为5ns的器件换成上升时间为2.5ns的器件,EMI会提高约4倍。EMI的辐射强度与频率的平方成正比,最高EMI频率(fknee)也称为EMI发射带宽,它是信号上升时间而不是信号频率的函数:fknee =0.35/Tr (其中Tr为器件的信号上升时间)
这种辐射型EMI的频率范围为30MHz到几个GHz,在这个频段上,波长很短,电路板上即使非常短的布线也可能成为发射天线。当EMI较高时,电路容易丧失正常的功能。因此,在器件选型上,在保证电路性能要求的前提下,应尽量使用低速芯片,采用合适的驱动/接收电路。另外,由于器件的引线管脚都具有寄生电感和寄生电容,因此在高速设计中,器件封装形式对信号的影响也是不可忽视的,因为它也是产生EMI辐射的重要因素。一般地,贴片器件的寄生参数小于插装器件,BGA 封装的寄生参数小于QFP 封装。

2.2 连接器的选择与信号端子定义

连接器是高速信号传输的关键环节,也是易产生EMI的薄弱环节。在连接器的端子设计上可多安排地针,减小信号与地的间距,减小连接器中产生辐射的有效信号环路面积,提供低阻抗 回流通路。必要时,要考虑将一些关键信号用地针隔离。

2.3 叠层设计

在成本许可的前提下,增加地线层数量,将信号层紧邻地平面层可以减少EMI辐射。对于高速PCB,电源层和地线层紧邻耦合,可降低电源阻抗,从而降低EMI。

2.4 布局

根据信号电流流向,进行合理的布局,可减小信号间的干扰。合理布局是控制EMI的关键。布局的基本原则是:
●模拟信号易受数字信号的干扰,模拟电路应与数字电路隔开;
●时钟线是主要的干扰和辐射源,要远离敏感电路,并使时钟走线最短;
●大电流、大功耗电路尽量避免布置在板中心区域,同时应考虑散热和辐射的影响;
●连接器尽量安排在板的一边,并远离高频电路;
●输入/输出电路靠近相应连接器,去耦电容靠近相应电源管脚;
●充分考虑布局对电源分割的可行性,多电源器件要跨在电源分割区域边界布放,以有效降低平面分割对EMI的影响;
●回流平面(路径)不分割。

2.5 布线

●阻抗控制:高速信号线会呈现传输线的特性,需要进行阻抗控制,以避免信号的反射、过冲和振铃,降低EMI辐射。
●将信号进行分类,按照不同信号(模拟信号、时钟信号、I/O信号、总线、电源等)的EMI辐射强度及敏感程度,使干扰源与敏感系统尽可能分离,减小耦合。
●严格控制时钟信号(特别是高速时钟信号)的走线长度、过孔数、跨分割区、端接、布线层、回流路径等。
●信号环路,即信号流出至信号流入形成的回路,是PCB设计中EMI控制的关键,在布线时必须加以控制。要了解每一关键信号的流向,对于关键信号要靠近回流路径布线,确保其环路面积最小。

2.6 电源平面的分割处理●电源层的分割
在一个主电源平面上有一个或多个子电源时,要保证各电源区域的连贯性及足够的铜箔宽度。分割线不必太宽,一般为20~50mil线宽即可,以减少缝隙辐射。
●地线层的分割

地平面层应保持完整性,避免分割。若必须分割,要区分数字地、模拟地和噪声地,并在出口处通过一个公共接地点与外部地相连。

3 EMI的其它控制手段

3.1 电源系统设计

●设计低阻抗电源系统,确保在低于fknee频率范围内的电源分配系统的阻抗低于目标阻抗。
●使用滤波器,控制传导干扰。
●电源去耦。在EMI设计中,提供合理的去耦电容,能使芯片可靠工作,并降低电源中的高频噪声,减少EMI。由于导线电感及其它寄生参数的影响,电源及其供电导线响应速度慢,从而会使高速电路中驱动器所需要的瞬时电流不足。合理地设计旁路或去耦电容以及电源层的分布电容,能在电源响应之前,利用电容的储能作用迅速为器件提供电流。正确的电容去耦可以提供一个低阻抗电源路径,这是降低共模 EMI的关键。

3.2 接地

接地设计是减少整板EMI的关键。
●确定采用单点接地、多点接地或者混合接地方式。
●数字地、模拟地、噪声地要分开,并确定一个合适的公共接地点。
●双面板设计若无地线层,则合理设计地线网格很重要,应保证地线宽度》电源线宽度》信号线宽度。也可采用大面积铺地的方式,但要注意在同一层上的大面积地的连贯性要好。
●对于多层板设计,应确保有地平面层,减小共地阻抗。

3.3 串接阻尼电阻

在电路时序要求允许的前提下,抑制干扰源的基本技术是在关键信号输出端串入小阻值的电阻,通常采用22~33Ω的电阻。这些输出端串联小电阻能减慢上升/下降时间并能使过冲及下冲信号变得较平滑,从而减小输出波形的高频谐波幅度,达到有效地抑制EMI的目的。

3.4 屏蔽

●关键器件可以使用EMI屏蔽材料或屏蔽网。
●对关键信号的屏蔽,可以设计成带状线或在关键信号的两侧以地线相隔离。

3.5 扩频

扩展频谱(扩频)的方法是一种新的降低EMI的有效方法。扩展频谱是将信号进行调制,把信号能量扩展到一个比较宽的频率范围上。实际上,该方法是对时钟信号的一种受控的调制,这种方法不会明显增加时钟信号的抖动。实际应用证明扩展频谱技术是有效的,可以将辐射降低7到20dB.更多关于pcb相关知识。捷配网,www.jiepei.com/g532

原文地址:https://blog.51cto.com/13946992/2405118

时间: 2024-10-19 15:11:57

PCB板产生EMI的原理以及如何抑制的相关文章

怎样做一块好的PCB板

大家都知道理做PCB板就是把设计好的原理图变成一块实实在在的PCB电路板,请别小看这一过程,有很多原理上行得通的东西在工程中却难以实现,或是别人能实现的东西另一些人却实现不了,因此说做一块PCB板不难,但要做好一块PCB板却不是一件容易的事情.微电子领域的两大难点在于高频信号和微弱信号的处理,在这方面PCB制作水平就显得尤其重要,同样的原理设计,同样的元器件,不同的人制作出来的PCB就具有不同的结果,那么如何才能做出一块好的PCB板呢?根据我们以往的经验,想就以下几方面谈谈自己的看法: 一:要明

Altium Designer设计PCB板之“精神”

通过一小段时间的练习,感觉先领悟设计PCB板的“精神”更加重要.在这里,我指的“精神”是指PCB板中涉及的元器件原理图及其封装设计.当然,设计PCB板还有其他方面重要的精神需要掌握.本文所提到的“精神”是画PCB板的基础.只要有这个“精神”在,你就大概能够画画板子啦(画的好不好另当别论). 一个电路是由诸多元器件组成的,其中有些元器件是可以在官方提供的库或第三方的库找到,另外的就需要自己设计啦.如果你不知道如何去设计在库中找不到的元器件,你就会无从下手.下边我们就来看看如何设计元器件吧(软件版本

如何用TDR来测试PCB板的线路阻抗

隔壁小王已经讲了TDR的原理以及如何确定TDR的分辨率.那么,我们要正确测量PCB板上的线路阻抗,还有哪些需要注意的地方呢? 1. 阻抗测试的行业标准 之前贴过好多张阻抗测试的图片,重新再贴一张给大家看看.阻抗并不是想象中稳定的直线,而是波澜起伏.在前端和后端会受到探头或者开路的影响,中间由于生产制程的关系,也会有波动. 那么,我们怎么判断测试结果呢?怎么确定生产的PCB阻抗是否满足要求呢?首先来看看IPC规范,IPC2557A建议的测量区间是DUT的30%~70%区间. 再来看看Intel以及

4个设计绝招教你减少PCB板电磁干扰

电子设备的电子信号和处理器的频率不断提升,电子系统已是一个包含多种元器件和许多分系统的复杂设备.高密和高速会令系统的辐射加重,而低压和高灵敏度 会使系统的抗扰度降低. 因此,电磁干扰(EMI)实在是威胁着电子设备的安全性.可靠性和稳定性.我们在设计电子产品时,PCB板的设计对解决EMI问题至关重要. 本文主要讲解PCB设计时要注意的地方,从而减低PCB板中的电磁干扰问题. 电磁干扰(EMI)的定义 电磁干扰(EMI,Electro MagneTIc Interference),可分为辐射和传导干

PCB_<2>PCB板的覆铜以及泪滴

1.将之前做的pcb板打开,将他布线在同一个面上 都是一样的线就是在一个面上 2.先补泪滴 完成补泪滴 3.覆铜 完成

PCB板蛇形走线有什么作用

PCB上的不论什么一条走线在通过高频信号的情况下都会对该信号造成时延时,蛇形走线的主要作用是补偿"同一组相关"信号线中延时较小的部分,这些部分一般是没有或比其他信号少通过另外的逻辑处理:最典型的就是时钟线.通常它不需经过不论什么其他逻辑处理.因而其延时会小于其他相关信号. 快速数字PCB板的等线长是为了使各信号的延迟差保持在一个范围内,保证系统在同一周期内读取的数据的有效性(延迟差超过一个时钟周期时会错读下一周期的数据),一般要求延迟差不超过14时钟周期,单位长度的线延迟差也是固定的,

PCB板的线宽、覆铜厚度与通过的电流对应的关系

1英尺=12英寸1英寸inch=1000密尔mil1mil=25.4um =0.0254mm1mil=1000uin   mil密耳有时也成英丝1um=40uin(有些公司称微英寸为麦,Es-- 保护版权!尊重作者!本文来自: 热点频道(http://www.fm898.net)--其实是微英寸)1OZ=28.35克/平方英尺=35微米 PCB板铜箔载流量                                 铜箔宽度   铜箔厚度    70um        50um       

PCB板层介绍

TopLayer(顶层)画出来的线条是红色,就是一般双面板的上面一层,单面板就用不到这层. BottomLayer(底层)画出来的线条是蓝色,就是单面板上面的线路这层. MidLayer1(中间层1)这个是第一层中间层,好像有30层,一般设计人员用不到,你先不用管他,多面板时候用的.默认在99SE中不显示,也用不到. Mechanical Layers(机械层)(紫红色)用于标记尺寸,板子说明,在PCB抄板加工的时候是忽略的,也就是板子做出来是看不出来的,简单点式注释的意思. Top Overl

PCB板上镀镍厚度

PCB制造工业由于成本.周期时间和材料兼容性的原因,对减少沉淀在电路板上的镍的数量感兴趣.最小镍的规格应该帮助防止铜对金表面的扩散.保持良好的焊接点强度.和较低的接触电阻.最大镍的规格应该允许板制造的灵活性,因为没有严重的失效方式是与厚的镍沉淀有关的.      对于大多数今天的电路板设计,2.0µm(80µinches)的非电解镍涂层是所要求的最小镍厚度.在实际操作中,在PCB的一个生产批号中将使用一个范围的镍厚度(图二).镍厚度的变化将是浸浴化学品特性的变化和自动起吊机器的驻留时间的变化结果