[CSP-S模拟测试]:tree(DP)

题目传送门(内部题57)


输入格式

第一行包含一个数:$n$表示树的节点数。
接下来$n-1$行,每行包含两个数:$u,v$表示无根树的一条边。


输出格式

输出$n$行,第$i$行包含一个浮点数,保留三位小数,表示第$i$号点第一次访问的期望时间。


样例

样例输入:

3
1 2
2 3

样例输出:

1.000
2.000
5.000


数据范围与提示

样例解释:

样例解释:容易分析出,所有可能情况下,到达$1$号点和$2$号点的时间都分别是:$1$和$2$,我们考虑$3$号点的到达时间,所有可能的过程:$12(12)*3$,表示先到$1$号店,再到$2$号点,然后重复任意次$1$、$2$(可以是$0$次),最后到达$3$。
对于$12(12)^i3$这个具体过程来说(表示中间经过$i$次$1$、$2$),到达$3$号点的时间是$t_i=2(i+1)+1$,这个随机过程的概率是$p_i={(\frac{1}{2})}^{(i+1)}$,期望的时间是$E(u=3)=\sum \limits_{i=0}^{\infty}t_ip_i=5$,故到达$3$号点的期望时刻为$5$。

数据范围:

对于$10\%$的数据,$1\leqslant 10$,保证每个点的度不超过$2$;
对于另外$20\%$的数据,$1\leqslant n\leqslant {10}^5$,保证每个点的度不超过$2$;
对于另外$20\%$的数据,$1\leqslant n\leqslant 100$;
对于$100\%$的数据,$1\leqslant n\leqslant {10}^5$。


题解

考虑$DP$,设$dp[i]$表示到达$i$点的期望时间。

你可能会很容易的推出来一个式子:

$$dp[u]=dp[fa]+2(n-size[u])-1$$

然后你会发现没有小数,删掉它交暴力。

这就是我的考试全过程……

然而,三位小数就是逗我玩的……

无语……

下面讲一下推导:

考虑一个随机过程,第一次走到$u$号点的时间可以分成两部分,第一部分是从$1$号点随机游走第一次走到$u$的父亲$p$的时间,第二部分是从$p$开始走,第一次走到$u$的时间,由期望的线性性,第一次走到$u$的时间期望等于这两部分期望的和。第一部分是一个子问题,我们考虑怎么解决第二部分,我们把这个问题变成一棵树(并且根节点脑袋上也有一条边),从根节点开始随机游走,走出这棵树期望的时间,我们用$x_u$表示这个期望,我们对$u$的子树中的点也类似地定义$x_v$,这样我们可以列出关系式:

$$x_u=\frac{(1+\sum \limits_{v}(x_u+x_v+1))}{d}$$

其中$d$是$u$的度数(包括那根天线),这个关系是中的第一个$1$表示直接向上走,后面那个扩后中的三部分,那个$1$表示从$u$走向$v$,$x_v$表示从$v$走回来期望时间, 表示这个时候继续走,走出去还需要花的时间。因为是等概率,所以直接乘以$frac{1}{d}$这个概率即可。化简后是:

$$x_u=d+\sum \limits_{v}x_v$$

即$x_u$等于$u$这棵子树的所有节点度的和,考虑到除了那根天线之外,所有的边对度的贡献为$2$,所以:

$$x_u=2size[u]+1$$

这样,子问题就有了一个简单的答案了。我们回到原问题,用$dp[u]$表示第一次走到$u$的期望时间,用$fa$表示$u$的父亲,有:

$$dp[u]=dp[fa]+2(n-size[u])-1$$

时间复杂度:$\Theta(n)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
struct rec{int nxt,to;}e[200001];
int head[100001],cnt;
int n;
bool vis[100001];
int size[100001];
long long dp[100001];
void add(int x,int y)
{
	e[++cnt].nxt=head[x];
	e[cnt].to=y;
	head[x]=cnt;
}
void dfs1(int x)
{
	vis[x]=1;
	size[x]=1;
	for(int i=head[x];i;i=e[i].nxt)
		if(!vis[e[i].to])
		{
			dfs1(e[i].to);
			size[x]+=size[e[i].to];
		}
}
void dfs2(int x)
{
	vis[x]=1;
	for(int i=head[x];i;i=e[i].nxt)
		if(!vis[e[i].to])
		{
			dp[e[i].to]=dp[x]+2*(n-size[e[i].to])-1;
			dfs2(e[i].to);
		}
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<n;i++)
	{
		int x,y;
		scanf("%d%d",&x,&y);
		add(x,y);add(y,x);
	}
	dfs1(1);
	memset(vis,0,sizeof(vis));
	dp[1]=1;
	dfs2(1);
	for(int i=1;i<=n;i++)
		printf("%.3lf\n",(double)dp[i]);
	return 0;
}


rp++

原文地址:https://www.cnblogs.com/wzc521/p/11586404.html

时间: 2024-11-02 11:37:50

[CSP-S模拟测试]:tree(DP)的相关文章

[CSP-S模拟测试]:Tree(贪心)

题目描述 给定一颗$n$个点的树,树边带权,试求一个排列$P$,使下式的值最大 $$\sum \limits_{i=1}^{n-1}maxflow(P_i,P_{i+1})$$ 其中$maxflow(s,t)$表示从点$s$到点$t$之间的最大流,即从$s$到$t$的路径上最小的边权 输入格式 第一行一个整数$n$,表示点数下接$n−1$行,每行三个数$u,v,w$表示一条连接点$u$和点$v$权值为$w$的边 输出格式 输出一行一个整数,表示答案 样例 样例输入: 21 2 2333 样例输出

2018冬令营模拟测试赛(十七)

2018冬令营模拟测试赛(十七) [Problem A]Tree 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见"试题描述" 数据规模及约定 见"试题描述" 题解 这个数据范围肯定是树上背包了. 令 \(f(i, j, k)\) 表示子树 \(i\) 中选择了 \(j\) 个节点,路径与根的连接情况为 \(k\),具体地: \(k = 0\) 时,路径的两个端点

模拟测试(vj)

做这份模拟测试,已经崩溃了,英文看不懂,题意理解错.到结束了只a了第一题,人生陷入了低谷,于是花了一天的时间终于把不会的弄明白了,在这里写一份总结~ T1,简单的模拟,如果打枪打中一支鸟,将这个位置设为0,并向两边扩散,注意这个位置一定要有鸟. 代码~ #include<bits/stdc++.h> using namespace std; int a[30000]; int n,m; int main() { cin>>n; for(int i=1;i<=n;i++) ci

微信在线信息模拟测试工具(基于Senparc.Weixin.MP)

目前为止似乎还没有看到过Web版的普通消息测试工具(除了官方针对高级接口的),现有的一些桌面版的几个测试工具也都是使用XML直接请求,非常不友好,我们来尝试做一个“面向对象”操作的测试工具. 测试工具在线DEMO:http://weixin.senparc.com/SimulateTool Senparc.Weixin.MP是一个开源的微信SDK项目,地址:https://github.com/JeffreySu/WeiXinMPSDK (其中https://github.com/Jeffrey

2018冬令营模拟测试赛(三)

2018冬令营模拟测试赛(三) [Problem A]摧毁图状树 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见"试题描述" 数据规模及约定 见"试题描述" 题解 这题没想到贪心 QwQ,那就没戏了-- 贪心就是每次选择一个最深的且没有被覆盖的点向上覆盖 \(k\) 层,因为这个"最深的没有被覆盖的点"不可能再有其它点引出的链覆盖它了,而它又

2018冬令营模拟测试赛(五)

2018冬令营模拟测试赛(五) [Problem A][UOJ#154]列队 试题描述 picks 博士通过实验成功地得到了排列 \(A\),并根据这个回到了正确的过去.他在金星凌日之前顺利地与丘比签订了契约,成为了一名马猴烧酒. picks 博士可以使用魔法召唤很多很多的猴子与他一起战斗,但是当猴子的数目 \(n\) 太大的时候,训练猴子就变成了一个繁重的任务. 历经千辛万苦,猴子们终于学会了按照顺序排成一排.为了进一步训练,picks 博士打算设定一系列的指令,每一条指令 \(i\) 的效果

2018冬令营模拟测试赛(十九)

2018冬令营模拟测试赛(十九) [Problem A]小Y 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见"试题描述" 数据规模及约定 见"试题描述" 题解 目前未知. 这题目前就能做到 \(O(n \sqrt{M} \log n)\),其中 \(M\) 是逆序对数,然而会被卡 \(T\):当然这题暴力可以拿到和左边那个算法一样的分数,只要暴力加一个剪枝:当左

2018-10-25 模拟测试题解

目录 问题 A: 魏传之长坂逆袭 题目描述 输入 输出 样例输入 样例输出 题解 问题 B: 蜀传之单刀赴会 题目描述 [问题描述] 输入 输出 样例输入 样例输出 题解 问题 C: 吴传之火烧连营 [题目背景] [问题描述] 输入 输出 样例输入 样例输出 [样例解释] [数据规模和约定] 题解 本篇题解也发表于zwcblog作者是同一个人 问题 A: 魏传之长坂逆袭 题目描述 众所周知,刘备在长坂坡上与他的一众将领各种开挂,硬生生从曹操手中逃了出去,随后与孙权一起火烧赤壁.占有荆益.成就霸业

noip模拟测试21

T1:折纸 这道写崩我也是没话说…… 模拟就完了,记录每次的折叠点,每次将之前的都扫一遍就完了 1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 #include<cmath> 5 #include<algorithm> 6 #include<cstdlib> 7 #define ll long long 8 using namespace std; 9 con