BLE——协议层次结构

未完待续……


BLE协议


Bluetooth Application


Applications


GATT-Based Profiles/Services


Bluetooth Core

(Stack)


BLE Host


ATT、GATT、SM


GAP


L2CAP


HCI(对蓝牙协议无影响)


BLE Controller


Link Layer


Physical Layer

1  Bluetooth Core(Stack)

  蓝牙核心协议,关注蓝牙核心技术的描述和规范,只提供基础的机制。

  蓝牙核心协议由Controller和Host两部分组成,在一个系统中,Host只有一个,但Controller可以有多个,如:单独的LE Controller;单独的BR/EDR Controller;单独的LE+BR/EDR Controller;在单独的BR/EDR Controller或LE+BR/EDR Controller基础上,增加一个或多个额外的AMP Controller。

1.1  Controller

  Controller实现射频相关的模拟和数字部分,完成最基本的数据发送和接收,Controller对外接口是天线,对内接口是主机控制器接口HCI(Hostcontroller interface);控制器包含物理层PHY(physicallayer),链路层LL(linker layer),直接测试模式DTM(Direct Test mode)以及主机控制器接口HCI。

1.1.1  Physical Layer

  频率选择(2402-2480MHz) + 信道选择(40) + 信道间隔(2MHz) + 调制方式(GFSK) + 数据传输速率(1Mbps)+ 接收灵敏度 + 发射功率 + 杂散辐射 + 射频容差

1、信道选择

物理信道(Physical Channel)为: F=2402+k*2MHz ,k=0,…,39,共40个信道。

Physical Channel = RF Channel

1.1.2.  Link Layer

信道分类(3+37) + 广播信道定义(37、38、39) + 数据通道分发(跳频) + 状态角色定义和切换 + 数据包校验重传

LL – Link Layer – Logic Link

  1、广播信道定义

37ch —— 2402MHz

38ch —— 2426MHz

39ch —— 2480MHz

之所以选定3个广播信道是一种权衡,少了可能会被阻塞,多了会增加功耗。3个广播信道刚好避开了WiFi的1ch,6ch,11ch,所以BLE广播的时候,不会被WiFi影响。(PS:可以人为阻塞这三个通道)

  2、数据信道切换

BLE匹配之后,LL由广播信道切换到数据信道,具体使用哪个数据信道在匹配时约定,且连接不会长期使用一个固定通道,会通过跳频技术随机有规律切换。

  3、定义状态和角色

图 2 Link Layer状态机

Standby状态是初始状态,即不发送数据,也不接收数据。根据上层实体的命令(如位于host软件中GAP),可由其它任何一种状态进入,也可以切换到除Connection状态外的任意一种状态。

Advertising状态是可以通过广播通道发送数据的状态,由Standby状态进入。它广播的数据可以由处于Scanning或者Initiating状态的实体接收。上层实体可通过命令将Advertising状态切换回Standby状态。另外,连接成功后,也可切换为Connection状态。

Scanning状态是可以通过广播通道接收数据的状态,由Standby状态进入。根据Advertiser所广播的数据的类型,有些Scanner还可以主动向Advertiser请求一些额外数据。上层实体可通过命令将Scanning状态切换回Standby状态。

Initiating状态和Scanning状态类似,不过是一种特殊的接收状态,由Standby状态进入,只能接收Advertiser广播的connectable的数据,并在接收到数据后,发送连接请求,以便和Advertiser建立连接。当连接成功后,Initiater和对应的Advertiser都会切换到Connection状态。

Connection状态是和某个实体建立了单独通道的状态,在通道建立之后,由Initiating或者Advertising自动切换而来。通道断开后,会重新回到Standby状态。

通道建立后(通常说“已连接”),处于Connection状态的双方,分别有两种角色Master和Slave:

Initiater方称作Master

Advertiser方称作Slave

  4、Air Interface Protocol

解决两个问题:不同实体间在对应状态下的数据交换,根据上层实体的指令以及实际情况负责状态之间的切换。

定义Physical Channel上收发的数据包格式:

Preamble(1 octet) Access Address(4 octets) PDU(2 to 257 octets) CRC(3 octets)

定义不同类型的PDU及其格式:

Advertising channel中Advertising有关的PDU

Advertising channel中Scanning有关的PDU

Advertising channel中Initialing有关的PDU

Data channel中LL data有关的PDU

Data channel中LL control有关的PDU

针对广播通道以白名单(White List)的形式定义Link Layer的数据过滤机制

执行广播通道上实际的packet收发操作

定义连接建立的方式及过之后的应答、流控等机制

  5、Link Layer Control

抽象出来一个链路控制协议(Link Layer Control),用于管理、控制两个Link Layer实体之间所建立的这个Connection,主要功能包括:

更新Connection相关的参数,如transmitWindowSize、transmitWindowOffset、connInterval等等(具体意义这里不再详述);

更新该连接所使用的跳频图谱(使用哪些Physical Channels);

执行链路加密(Encryption)有关的过程。

1.2.  HCI

    1. HCI作用图解

图 3 HCI作用图解

定义Host和Controller(通常是两颗IC)之间的通信协议,对理解蓝牙协议来说,是无关紧要的。向上为主机提供软件应用程序接口(API)。

    1. HCI内容

HCI逻辑上定义一系列的命令,事件;

物理上有UART,SDIO,USB,SPI接口;

实际可能包含里面的任意1种或几种。常见RF测试时,我们常使用UART发送标准的HCI指令控制Controller。

1.3.  Host

主机host是蓝牙协议栈的核心部分,GAP层负责制定设备工作的角色,SS层负责指定安全连接,Logic Link层功能非常强大,官方作用为协议/通道的多路复用,负责上层应用数据(L2CAPService Data Units,SDUs)的分割(和重组),生成协议数据单元(L2CAP Packet Data Units,PDUs),以满足用户数据传输对延时的要求,并便于后续的重传、流控等机制的实现。

1.3.1  L2CAP

提供数据封装服务,将LL提供的Logical Channel换分为一个个的L2CAP Channel,以便提供应用程序级别的通道复用。

逻辑连接控制和适配协议,Logic Link Control and Adaptation Protocol

Protocol/channel multiplexing,协议/通道的多路复用;

Segmentation and reassembly,上层应用数据(L2CAP Service Data Units,SDUs)的分割(和重组),生成协议数据单元(L2CAP Packet Data Units,PDUs),以满足用户数据传输对延时的要求,并便于后续的重传、流控等机制的实现;

Flow control per L2CAP channel,基于L2CAP Channel的流控机制;

Error control and retransmissions,错误控制和重传机制;

Support for Streaming,支持流式传输(如音频、视频等,不需要重传或者只需要有限重传);

Fragmentation and Recombination,协议数据单元(PDUs)的分片(和重组),生成符合Link Layer传输要求的数据片(长度不超过251,具体可参考5.4.1中有关的介绍);

Quality of Service,QoS的支持。

Protocol/channel multiplexing

channel multiplexing(基于通道的多路复用)—— CID,Channel ID

Protocol multiplexing(基于协议的多路复用)——只允许在BR/EDR controller中使用

1.3.2  ATT(Attribute Protocol)

负责数据检索

对上文的总结:Physical Layer负责提供一系列的Physical Channel;基于这些Physical Channel,Link Layer可在两个设备之间建立用于点对点通信的Logical Channel;而L2CAP则将这个Logical Channel换分为一个个的L2CAP Channel,以便提供应用程序级别的通道复用。到此之后,基本协议栈已经构建完毕,应用程序已经可以基于L2CAP欢快的run起来了。

    1. 特点

基于L2CAP,使用固定的Channel ID(0x004)

采用client-server的形式。提供信息(以后都称作Attribute)的一方称作ATT server(一般是那些传感器节点),访问信息的一方称作ATT client。

一个Attribute由Attribute Type、Attribute Handle和Attribute Value组成。

Attribute可以定义一些权限(Permissions),以便server控制client的访问行为

根据所定义的Attribute PDU的不同,client可以对server有多种访问方式

1.3.3  GATT(Generic Attribute Profile)

ATT之所以称作“protocol”,是因为它还比较抽象,仅仅定义了一套机制,允许client和server通过Attribute的形式共享信息。

GATT是一个profile(更准确的说是profile framework)

在蓝牙协议中,profile一直是一个比较抽象的概念,我们可以将其理解为“应用场景、功能、使用方式”都被规定好的Application。传统的BR/EDR如此,BLE更甚。上面我们讲过,BLE很大一部分的应用场景是信息(Attribute)的共享,因此,BLE协议栈基于Attribute Protocol,定义了一个称作GATT(Generic Attribute)的profile framework(它本身也是一个profile),用于提供通用的、信息的存储和共享等功能。

图 4 GATT Profile层次结构

1.3.4  SM(Security Manager)

1.3.5  GAP(Generic Access Profile)

通用访问配置文件,实现功能如下:

    1. 定义GAP层的蓝牙设备角色

Broadcaster Role,设备正在发送advertising events;

Observer Role,设备正在接收advertising events;

Peripheral Role,设备接受Link Layer连接(对应Link Layer的slave角色);

Central Role,设备发起Link Layer连接(对应Link Layer的master角色)。

    1. 定义GAP层的、用于实现各种通信的操作模式和过程

Broadcast mode and observation procedure,实现单向的、无连接的通信方式;

Discovery modes and procedures,实现蓝牙设备的发现操作;

Connection modes and procedures,实现蓝牙设备的连接操作;

Bonding modes and procedures,实现蓝牙设备的配对操作。

    1. 定义User Interface有关的蓝牙参数

蓝牙地址(Bluetooth Device Address);

蓝牙名称(Bluetooth Device Name);

蓝牙的pincode(Bluetooth Passkey);

蓝牙的class(Class of Device,和发射功率有关);

等等。

    1. Security有关的定义

2.  Application

蓝牙应用层协议,在蓝牙核心协议的基础上,根据具体的应用需求,定义出各种各样的策略,如FTP、文件传输、局域网等。

Profile是Application的代指,翻译为服务,具体有:SPP、HSP、HFP、FTP、IPv6/6LoWPAN等。

原文地址:https://www.cnblogs.com/suding/p/11380700.html

时间: 2024-10-04 01:57:01

BLE——协议层次结构的相关文章

[蓝牙] 2、蓝牙BLE协议及架构浅析&&基于广播超时待机说广播事件

第一章 BLE基本概念了解 一.蓝牙4.0和BLE区别 蓝牙4.0是一种应用非常广泛.基于2.4G射频的低功耗无线通讯技术.蓝牙低功耗(Bluetooth Low Energy ),人们又常称之为BlueTooth Smart,是由SIG( the Bluetooth Special Interest Group) 在2010年6月起草,在原有标准的蓝牙4.0核心协议上添加的一种低功耗技术. 蓝牙低功耗不等同于蓝牙4.0,只是蓝牙4.0的一个分支.蓝牙4.0是蓝牙3.0+ HS(高速蓝牙)规范的

蓝牙协议分析(3)_BLE协议栈介绍

1. 前言 通过"蓝牙协议分析(2)_协议架构"的介绍,大家对蓝牙协议栈应该有了简单的了解,但是,肯定还有"似懂非懂.欲说还休"的感觉.有这种感觉太正常了,毕竟蓝牙协议是一个历史悠久又比较庞大的协议,没那么容易理解. 因此,本文将换个视角,从协议栈设计者的角度,思考如下问题: 为什么会有蓝牙协议栈(Why)? 怎样实现蓝牙协议栈(How)? 蓝牙协议栈的最终样子是什么(What)? 另外,我们知道,当前的蓝牙协议包含BR/EDR.AMP.LE三种技术,为了降低复杂度

Android低功耗蓝牙(蓝牙4.0)——BLE开发(上)

段时间,公司项目用到了手机APP和蓝牙设备的通讯开发,这里也正好对低功耗蓝牙(蓝牙4.0及以后标准)的开发,做一个总结. 蓝牙技术联盟在2010年6月30号公布了蓝牙4.0标准,4.0标准在蓝牙3.0+HS标准的基础上增加了对低功耗蓝牙(BLE)的支持.相比原有的普通蓝牙和高速蓝牙,BLE最大的特点就是低功耗,低延时,快速的搜索和连接速度,但数据传输速度相比传统蓝牙低.接下去将从BLE的概念以及代码两个方面介绍Android下的BLE. 先来说说基本概念: 1.BLE相关概念 1.1 GATT.

蓝牙协议分析(7)_BLE连接有关的技术分析

转自:http://www.wowotech.net/bluetooth/ble_connection.html#comments 1. 前言 了解蓝牙的人都知道,在经典蓝牙中,保持连接(Connection)是一个相当消耗资源(power和带宽)的过程.特别是当没有数据传输的时候,所消耗的资源完全被浪费了.因而,对很多蓝牙设备来说(特别是功耗敏感的设备),希望在无数可传的时候,能够断开连接.但是,由于跳频(hopping)以及物理通道(Physical Channel)划分的缘故,经典蓝牙连接

看江湖老炮用尽洪荒之力解读网络协议(下)

作者言:老炮总结的有些协议比喻也不是很恰当,毕竟网络协议是一门科学,而江湖规矩是口口相传的道义:如果把此文当成一份凉菜,"老炮如是说"的话语只能做为一点调味,具体调的好不好,老炮也恍惚,老炮只是用心在调,咸了淡了您多包涵,欢迎品尝.上篇叙述了网络协议的上三路,本篇介绍网络协议的下四路.下面看一位老炮如何解读这些网络协议(下)传输层传输层是整个协议层次结构的核心,是惟一负责总体数据传输和控制的一层.它属于OSI模型7层的中间层,网络层只是根据网络地址将源结点发出的数据包传送到目的结点,而

[yueqian_scut]蓝牙防丢器原理、实现与Android BLE接口编程

本文是对已实现的蓝牙防丢器项目的总结,阐述蓝牙防丢器的原理.实现与Android客户端的蓝牙BLE接口编程.在这里重点关注如何利用BLE接口来进行工程实现,对于BLE的协议.涉及到JNI的BLE接口内部源码实现,笔者以后再详细剖析.但要求读者对BLE协议有一定的认识,如GAP.GATTprofile在BLE中的角色和作用,如何使用Service.Characteristic等. 一.蓝牙防丢器原理和产品需求 蓝牙防丢器的核心原理是根据接收到的蓝牙设备端的无线信号强度(RSSI)来估算距离.其计算

HTTP协议/RTSP协议/RTMP协议的区别

RTSP. RTMP.HTTP的共同点.区别 共同点: 1:RTSP RTMP HTTP都是在应用应用层. 2: 理论上RTSP RTMPHTTP都可以做直播和点播,但一般做直播用RTSP RTMP,做点播用HTTP.做视频会议的时候原来用SIP协议,现在基本上被RTMP协议取代了. 区别: 1:HTTP: 即超文本传送协议(ftp即文件传输协议). HTTP:(Real Time Streaming Protocol),实时流传输协议. HTTP全称Routing Table Maintena

[蓝牙] 3、<KEIL path> \ARM\Device\Nordic\nrf51822\Board\pca10001\s110\ble_app_hrs BLE心率检测工程

Heart Rate Example The Heart Rate Application is a firmware example that implements the Heart Rate profile using the hardware delivered in the nRF51822 Development Kit. The source code and project file can be found in the <InstallFolder>\Nordic\nrf5

【转】蓝牙ble app开发(三) -- 抓包

原文网址:http://blog.csdn.net/lckj686/article/details/43156617 关于android 蓝牙app开发抓包的重要性在 android 蓝牙ble app开发(二) -- 关键概念,连接参数,连接请求 中已经详细描述就不再熬述了固件基于cc2540  cc2541 1.环境 需要一个抓包器几十块钱, USBdongle 装Packet Sniffer软件进行抓包. 环境搭建可以参考:http://blog.csdn.net/mzy202/artic