redis缓存穿透-解决方案

上面的解决方案个人觉得时有误的,因为就算缓存了value的null值,后面的接口请求还是会判断走数据库,所以看解决方案二

解决方案二:

https://blog.csdn.net/muyi_amen/article/details/80229647   参考了博客

对于数据库中不存在的key,数据库查询的值为空,也将key对应的value缓存到redis上。

查询数据库前,到redis上判断key是否存在,如果存在,直接返回value,不管是否为空,这样就不会再去查数据库,达到了缓解数据库的作用。

       redisTemplate.opsForValue().set("ff", null);
        System.out.println(redisTemplate.opsForValue().get("ff"));

        if(redisTemplate.hasKey("ff")){
            System.out.println("命中");
            System.out.println(redisTemplate.opsForValue().get("ff"));
            return;//这样就不会再去访问数据库了。
        }
        System.out.println("=================未命中");

  

原文地址:https://www.cnblogs.com/Andrew520/p/10968428.html

时间: 2024-10-07 19:10:33

redis缓存穿透-解决方案的相关文章

Redis缓存穿透和缓存雪崩以及解决方案

Redis缓存穿透和缓存雪崩以及解决方案 Redis缓存穿透和缓存雪崩以及解决方案缓存穿透解决方案布隆过滤缓存空对象比较缓存雪崩解决方案保证缓存层服务高可用性依赖隔离组件为后端限流并降级数据预热缓存并发分布式锁 缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存不命中,接着查询数据库也无法查询出结果,因此也不会写入到缓存中,这将会导致每个查询都会去请求数据库,造成缓存穿透: 解决方案 布隆过滤 对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃,从而避免了对底层存储系

redis缓存穿透,缓存击穿,缓存雪崩原因+解决方案

###一.前言在我们日常的开发中,无不都是使用数据库来进行数据的存储,由于一般的系统任务中通常不会存在高并发的情况,所以这样看起来并没有什么问题,可是一旦涉及大数据量的需求,比如一些商品抢购的情景,或者是主页访问量瞬间较大的时候,单一使用数据库来保存数据的系统会因为面向磁盘,磁盘读/写速度比较慢的问题而存在严重的性能弊端,一瞬间成千上万的请求到来,需要系统在极短的时间内完成成千上万次的读/写操作,这个时候往往不是数据库能够承受的,极其容易造成数据库系统瘫痪,最终导致服务宕机的严重生产问题. 为了

Redis 缓存穿透

Redis 缓存穿透 https://www.cnblogs.com/jiekzou/p/9212114.html 场景描述:我们在项目中使用缓存通常都是先检查缓存中是否存在,如果存在直接返回缓存内容,如果不存在就直接查询数据库然后再缓存查询结果返回.这个时候如果我们查询的某一个数据在缓存中一直不存在,就会造成每一次请求都查询DB,这样缓存就失去了意义,在流量大时,可能DB就挂掉了. 穿透:频繁查询一个不存在的数据,由于缓存不命中,每次都要查询持久层.从而失去缓存的意义. 常用解决办法: ①用一

缓存雪崩,缓存穿透解决方案(转载)

http://www.cnblogs.com/jinjiangongzuoshi/archive/2016/03/03/5240280.htmlcc 1. 缓存穿透:查询一个必然不存在的数据.比如文章表,查询一个不存在的id,每次都会访问DB,如果有人恶意破坏,很可能直接对DB造成影响. 解决办法:对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃. 2.缓存失效:如果缓存集中在一段时间内失效,DB的压力凸显.这个没有完美解决办法,但可以分析用户行为,尽量让失效时间点均匀分

Redis缓存穿透、缓存雪崩

缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义.在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞. 解决方案 有很多种方法可以有效地解决缓存穿透问题,最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被 这个bitmap拦截掉,从而避免了对底层存储系统的查

redis缓存穿透、缓存击穿、缓存雪崩

缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,造成缓存穿透. 解决办法: 预校验 在控制层对查询参数先进行校验,不符合则丢弃. 布隆过滤 将所有可能查询的参数添加到BloomFilter中,一定不存在的记录就会被BloomFilter过滤掉,从而避免了对底层存储系统的查询压力. 缓存空对象 如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但

Redis缓存穿透和雪崩

一.缓存雪崩 1. 缓存挂了,所有请求都到了数据库了 2. 缓存没有挂,但同时到期,正好把所有缓存都删除了,所有请求都到了数据库了 3. 所有请求都到了数据库,很可能把数据库搞挂 二.缓存雪崩的解决方法 1. 缓存挂了的情况 a. 事发前:实现redis的高可用性(主从+sentinal+cluster) b. 事发时:本地缓存+限流(hystrix) c. 事发后:Redis持久化,重启后从磁盘上加载数据,快速恢复 三.缓存穿透 1. 查询一个不存在的数据,由于没有从数据库里查到,就不放入缓存

Redis缓存穿透、缓存雪崩、缓存击穿

缓存穿透: ? 缓存穿透,是指查询一个数据库一定不存在的数据.正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存.如果数据库查询对象为空,则不放进缓存. 代码流程 参数传入对象主键ID 根据key从缓存中获取对象 如果对象不为空,直接返回 如果对象为空,进行数据库查询 如果从数据库查询出的对象不为空,则放入缓存(设定过期时间) ? 想象一下这个情况,如果传入的参数为-1,会是怎么样?这个-1,就是一定不存在的对象.

数据库 | Redis 缓存雪崩解决方案

Redis 雪崩 缓存层承载着大量的请求,有效保护了存储层.但是如果由于缓存大量失效或者缓存整体不能提供服务,导致大量的请求到达存储层,会使存储层负载增加,这就是缓存雪崩的场景. 解决缓存雪崩,可以从以下几个方面入手. 1.保持缓存层的高可用性 使用Redis 哨兵模式或者Redis 集群部署方式,即便个别Redis 节点下线,整个缓存层依然可以使用.除此之外,还可以在多个机房部署 Redis,这样即便是机房死机,依然可以实现缓存层的高可用. 2.限流降级组件 无论是缓存层还是存储层都会有出错的