LinkedList源码剖析

LinkedList简介

LinkedList是基于双向循环链表(从源码中可以很容易看出)实现的,除了可以当做链表来操作外,它还可以当做栈、队列和双端队列来使用。

LinkedList同样是非线程安全的,只在单线程下适合使用。

LinkedList实现了Serializable接口,因此它支持序列化,能够通过序列化传输,实现了Cloneable接口,能被克隆。

LinkedList源码剖析

LinkedList的源码如下(加入了比较详细的注释):

  1 package java.util;
  2
  3 public class LinkedList<E>
  4     extends AbstractSequentialList<E>
  5     implements List<E>, Deque<E>, Cloneable, java.io.Serializable
  6 {
  7     // 链表的表头,表头不包含任何数据。Entry是个链表类数据结构。
  8     private transient Entry<E> header = new Entry<E>(null, null, null);
  9
 10     // LinkedList中元素个数
 11     private transient int size = 0;
 12
 13     // 默认构造函数:创建一个空的链表
 14     public LinkedList() {
 15         header.next = header.previous = header;
 16     }
 17
 18     // 包含“集合”的构造函数:创建一个包含“集合”的LinkedList
 19     public LinkedList(Collection<? extends E> c) {
 20         this();
 21         addAll(c);
 22     }
 23
 24     // 获取LinkedList的第一个元素
 25     public E getFirst() {
 26         if (size==0)
 27             throw new NoSuchElementException();
 28
 29         // 链表的表头header中不包含数据。
 30         // 这里返回header所指下一个节点所包含的数据。
 31         return header.next.element;
 32     }
 33
 34     // 获取LinkedList的最后一个元素
 35     public E getLast()  {
 36         if (size==0)
 37             throw new NoSuchElementException();
 38
 39         // 由于LinkedList是双向链表;而表头header不包含数据。
 40         // 因而,这里返回表头header的前一个节点所包含的数据。
 41         return header.previous.element;
 42     }
 43
 44     // 删除LinkedList的第一个元素
 45     public E removeFirst() {
 46         return remove(header.next);
 47     }
 48
 49     // 删除LinkedList的最后一个元素
 50     public E removeLast() {
 51         return remove(header.previous);
 52     }
 53
 54     // 将元素添加到LinkedList的起始位置
 55     public void addFirst(E e) {
 56         addBefore(e, header.next);
 57     }
 58
 59     // 将元素添加到LinkedList的结束位置
 60     public void addLast(E e) {
 61         addBefore(e, header);
 62     }
 63
 64     // 判断LinkedList是否包含元素(o)
 65     public boolean contains(Object o) {
 66         return indexOf(o) != -1;
 67     }
 68
 69     // 返回LinkedList的大小
 70     public int size() {
 71         return size;
 72     }
 73
 74     // 将元素(E)添加到LinkedList中
 75     public boolean add(E e) {
 76         // 将节点(节点数据是e)添加到表头(header)之前。
 77         // 即,将节点添加到双向链表的末端。
 78         addBefore(e, header);
 79         return true;
 80     }
 81
 82     // 从LinkedList中删除元素(o)
 83     // 从链表开始查找,如存在元素(o)则删除该元素并返回true;
 84     // 否则,返回false。
 85     public boolean remove(Object o) {
 86         if (o==null) {
 87             // 若o为null的删除情况
 88             for (Entry<E> e = header.next; e != header; e = e.next) {
 89                 if (e.element==null) {
 90                     remove(e);
 91                     return true;
 92                 }
 93             }
 94         } else {
 95             // 若o不为null的删除情况
 96             for (Entry<E> e = header.next; e != header; e = e.next) {
 97                 if (o.equals(e.element)) {
 98                     remove(e);
 99                     return true;
100                 }
101             }
102         }
103         return false;
104     }
105
106     // 将“集合(c)”添加到LinkedList中。
107     // 实际上,是从双向链表的末尾开始,将“集合(c)”添加到双向链表中。
108     public boolean addAll(Collection<? extends E> c) {
109         return addAll(size, c);
110     }
111
112     // 从双向链表的index开始,将“集合(c)”添加到双向链表中。
113     public boolean addAll(int index, Collection<? extends E> c) {
114         if (index < 0 || index > size)
115             throw new IndexOutOfBoundsException("Index: "+index+
116                                                 ", Size: "+size);
117         Object[] a = c.toArray();
118         // 获取集合的长度
119         int numNew = a.length;
120         if (numNew==0)
121             return false;
122         modCount++;
123
124         // 设置“当前要插入节点的后一个节点”
125         Entry<E> successor = (index==size ? header : entry(index));
126         // 设置“当前要插入节点的前一个节点”
127         Entry<E> predecessor = successor.previous;
128         // 将集合(c)全部插入双向链表中
129         for (int i=0; i<numNew; i++) {
130             Entry<E> e = new Entry<E>((E)a[i], successor, predecessor);
131             predecessor.next = e;
132             predecessor = e;
133         }
134         successor.previous = predecessor;
135
136         // 调整LinkedList的实际大小
137         size += numNew;
138         return true;
139     }
140
141     // 清空双向链表
142     public void clear() {
143         Entry<E> e = header.next;
144         // 从表头开始,逐个向后遍历;对遍历到的节点执行一下操作:
145         // (01) 设置前一个节点为null
146         // (02) 设置当前节点的内容为null
147         // (03) 设置后一个节点为“新的当前节点”
148         while (e != header) {
149             Entry<E> next = e.next;
150             e.next = e.previous = null;
151             e.element = null;
152             e = next;
153         }
154         header.next = header.previous = header;
155         // 设置大小为0
156         size = 0;
157         modCount++;
158     }
159
160     // 返回LinkedList指定位置的元素
161     public E get(int index) {
162         return entry(index).element;
163     }
164
165     // 设置index位置对应的节点的值为element
166     public E set(int index, E element) {
167         Entry<E> e = entry(index);
168         E oldVal = e.element;
169         e.element = element;
170         return oldVal;
171     }
172
173     // 在index前添加节点,且节点的值为element
174     public void add(int index, E element) {
175         addBefore(element, (index==size ? header : entry(index)));
176     }
177
178     // 删除index位置的节点
179     public E remove(int index) {
180         return remove(entry(index));
181     }
182
183     // 获取双向链表中指定位置的节点
184     private Entry<E> entry(int index) {
185         if (index < 0 || index >= size)
186             throw new IndexOutOfBoundsException("Index: "+index+
187                                                 ", Size: "+size);
188         Entry<E> e = header;
189         // 获取index处的节点。
190         // 若index < 双向链表长度的1/2,则从前先后查找;
191         // 否则,从后向前查找。
192         if (index < (size >> 1)) {
193             for (int i = 0; i <= index; i++)
194                 e = e.next;
195         } else {
196             for (int i = size; i > index; i--)
197                 e = e.previous;
198         }
199         return e;
200     }
201
202     // 从前向后查找,返回“值为对象(o)的节点对应的索引”
203     // 不存在就返回-1
204     public int indexOf(Object o) {
205         int index = 0;
206         if (o==null) {
207             for (Entry e = header.next; e != header; e = e.next) {
208                 if (e.element==null)
209                     return index;
210                 index++;
211             }
212         } else {
213             for (Entry e = header.next; e != header; e = e.next) {
214                 if (o.equals(e.element))
215                     return index;
216                 index++;
217             }
218         }
219         return -1;
220     }
221
222     // 从后向前查找,返回“值为对象(o)的节点对应的索引”
223     // 不存在就返回-1
224     public int lastIndexOf(Object o) {
225         int index = size;
226         if (o==null) {
227             for (Entry e = header.previous; e != header; e = e.previous) {
228                 index--;
229                 if (e.element==null)
230                     return index;
231             }
232         } else {
233             for (Entry e = header.previous; e != header; e = e.previous) {
234                 index--;
235                 if (o.equals(e.element))
236                     return index;
237             }
238         }
239         return -1;
240     }
241
242     // 返回第一个节点
243     // 若LinkedList的大小为0,则返回null
244     public E peek() {
245         if (size==0)
246             return null;
247         return getFirst();
248     }
249
250     // 返回第一个节点
251     // 若LinkedList的大小为0,则抛出异常
252     public E element() {
253         return getFirst();
254     }
255
256     // 删除并返回第一个节点
257     // 若LinkedList的大小为0,则返回null
258     public E poll() {
259         if (size==0)
260             return null;
261         return removeFirst();
262     }
263
264     // 将e添加双向链表末尾
265     public boolean offer(E e) {
266         return add(e);
267     }
268
269     // 将e添加双向链表开头
270     public boolean offerFirst(E e) {
271         addFirst(e);
272         return true;
273     }
274
275     // 将e添加双向链表末尾
276     public boolean offerLast(E e) {
277         addLast(e);
278         return true;
279     }
280
281     // 返回第一个节点
282     // 若LinkedList的大小为0,则返回null
283     public E peekFirst() {
284         if (size==0)
285             return null;
286         return getFirst();
287     }
288
289     // 返回最后一个节点
290     // 若LinkedList的大小为0,则返回null
291     public E peekLast() {
292         if (size==0)
293             return null;
294         return getLast();
295     }
296
297     // 删除并返回第一个节点
298     // 若LinkedList的大小为0,则返回null
299     public E pollFirst() {
300         if (size==0)
301             return null;
302         return removeFirst();
303     }
304
305     // 删除并返回最后一个节点
306     // 若LinkedList的大小为0,则返回null
307     public E pollLast() {
308         if (size==0)
309             return null;
310         return removeLast();
311     }
312
313     // 将e插入到双向链表开头
314     public void push(E e) {
315         addFirst(e);
316     }
317
318     // 删除并返回第一个节点
319     public E pop() {
320         return removeFirst();
321     }
322
323     // 从LinkedList开始向后查找,删除第一个值为元素(o)的节点
324     // 从链表开始查找,如存在节点的值为元素(o)的节点,则删除该节点
325     public boolean removeFirstOccurrence(Object o) {
326         return remove(o);
327     }
328
329     // 从LinkedList末尾向前查找,删除第一个值为元素(o)的节点
330     // 从链表开始查找,如存在节点的值为元素(o)的节点,则删除该节点
331     public boolean removeLastOccurrence(Object o) {
332         if (o==null) {
333             for (Entry<E> e = header.previous; e != header; e = e.previous) {
334                 if (e.element==null) {
335                     remove(e);
336                     return true;
337                 }
338             }
339         } else {
340             for (Entry<E> e = header.previous; e != header; e = e.previous) {
341                 if (o.equals(e.element)) {
342                     remove(e);
343                     return true;
344                 }
345             }
346         }
347         return false;
348     }
349
350     // 返回“index到末尾的全部节点”对应的ListIterator对象(List迭代器)
351     public ListIterator<E> listIterator(int index) {
352         return new ListItr(index);
353     }
354
355     // List迭代器
356     private class ListItr implements ListIterator<E> {
357         // 上一次返回的节点
358         private Entry<E> lastReturned = header;
359         // 下一个节点
360         private Entry<E> next;
361         // 下一个节点对应的索引值
362         private int nextIndex;
363         // 期望的改变计数。用来实现fail-fast机制。
364         private int expectedModCount = modCount;
365
366         // 构造函数。
367         // 从index位置开始进行迭代
368         ListItr(int index) {
369             // index的有效性处理
370             if (index < 0 || index > size)
371                 throw new IndexOutOfBoundsException("Index: "+index+ ", Size: "+size);
372             // 若 “index 小于 ‘双向链表长度的一半’”,则从第一个元素开始往后查找;
373             // 否则,从最后一个元素往前查找。
374             if (index < (size >> 1)) {
375                 next = header.next;
376                 for (nextIndex=0; nextIndex<index; nextIndex++)
377                     next = next.next;
378             } else {
379                 next = header;
380                 for (nextIndex=size; nextIndex>index; nextIndex--)
381                     next = next.previous;
382             }
383         }
384
385         // 是否存在下一个元素
386         public boolean hasNext() {
387             // 通过元素索引是否等于“双向链表大小”来判断是否达到最后。
388             return nextIndex != size;
389         }
390
391         // 获取下一个元素
392         public E next() {
393             checkForComodification();
394             if (nextIndex == size)
395                 throw new NoSuchElementException();
396
397             lastReturned = next;
398             // next指向链表的下一个元素
399             next = next.next;
400             nextIndex++;
401             return lastReturned.element;
402         }
403
404         // 是否存在上一个元素
405         public boolean hasPrevious() {
406             // 通过元素索引是否等于0,来判断是否达到开头。
407             return nextIndex != 0;
408         }
409
410         // 获取上一个元素
411         public E previous() {
412             if (nextIndex == 0)
413             throw new NoSuchElementException();
414
415             // next指向链表的上一个元素
416             lastReturned = next = next.previous;
417             nextIndex--;
418             checkForComodification();
419             return lastReturned.element;
420         }
421
422         // 获取下一个元素的索引
423         public int nextIndex() {
424             return nextIndex;
425         }
426
427         // 获取上一个元素的索引
428         public int previousIndex() {
429             return nextIndex-1;
430         }
431
432         // 删除当前元素。
433         // 删除双向链表中的当前节点
434         public void remove() {
435             checkForComodification();
436             Entry<E> lastNext = lastReturned.next;
437             try {
438                 LinkedList.this.remove(lastReturned);
439             } catch (NoSuchElementException e) {
440                 throw new IllegalStateException();
441             }
442             if (next==lastReturned)
443                 next = lastNext;
444             else
445                 nextIndex--;
446             lastReturned = header;
447             expectedModCount++;
448         }
449
450         // 设置当前节点为e
451         public void set(E e) {
452             if (lastReturned == header)
453                 throw new IllegalStateException();
454             checkForComodification();
455             lastReturned.element = e;
456         }
457
458         // 将e添加到当前节点的前面
459         public void add(E e) {
460             checkForComodification();
461             lastReturned = header;
462             addBefore(e, next);
463             nextIndex++;
464             expectedModCount++;
465         }
466
467         // 判断 “modCount和expectedModCount是否相等”,依次来实现fail-fast机制。
468         final void checkForComodification() {
469             if (modCount != expectedModCount)
470             throw new ConcurrentModificationException();
471         }
472     }
473
474     // 双向链表的节点所对应的数据结构。
475     // 包含3部分:上一节点,下一节点,当前节点值。
476     private static class Entry<E> {
477         // 当前节点所包含的值
478         E element;
479         // 下一个节点
480         Entry<E> next;
481         // 上一个节点
482         Entry<E> previous;
483
484         /**
485          * 链表节点的构造函数。
486          * 参数说明:
487          *   element  —— 节点所包含的数据
488          *   next      —— 下一个节点
489          *   previous —— 上一个节点
490          */
491         Entry(E element, Entry<E> next, Entry<E> previous) {
492             this.element = element;
493             this.next = next;
494             this.previous = previous;
495         }
496     }
497
498     // 将节点(节点数据是e)添加到entry节点之前。
499     private Entry<E> addBefore(E e, Entry<E> entry) {
500         // 新建节点newEntry,将newEntry插入到节点e之前;并且设置newEntry的数据是e
501         Entry<E> newEntry = new Entry<E>(e, entry, entry.previous);
502         newEntry.previous.next = newEntry;
503         newEntry.next.previous = newEntry;
504         // 修改LinkedList大小
505         size++;
506         // 修改LinkedList的修改统计数:用来实现fail-fast机制。
507         modCount++;
508         return newEntry;
509     }
510
511     // 将节点从链表中删除
512     private E remove(Entry<E> e) {
513         if (e == header)
514             throw new NoSuchElementException();
515
516         E result = e.element;
517         e.previous.next = e.next;
518         e.next.previous = e.previous;
519         e.next = e.previous = null;
520         e.element = null;
521         size--;
522         modCount++;
523         return result;
524     }
525
526     // 反向迭代器
527     public Iterator<E> descendingIterator() {
528         return new DescendingIterator();
529     }
530
531     // 反向迭代器实现类。
532     private class DescendingIterator implements Iterator {
533         final ListItr itr = new ListItr(size());
534         // 反向迭代器是否下一个元素。
535         // 实际上是判断双向链表的当前节点是否达到开头
536         public boolean hasNext() {
537             return itr.hasPrevious();
538         }
539         // 反向迭代器获取下一个元素。
540         // 实际上是获取双向链表的前一个节点
541         public E next() {
542             return itr.previous();
543         }
544         // 删除当前节点
545         public void remove() {
546             itr.remove();
547         }
548     }
549
550
551     // 返回LinkedList的Object[]数组
552     public Object[] toArray() {
553     // 新建Object[]数组
554     Object[] result = new Object[size];
555         int i = 0;
556         // 将链表中所有节点的数据都添加到Object[]数组中
557         for (Entry<E> e = header.next; e != header; e = e.next)
558             result[i++] = e.element;
559     return result;
560     }
561
562     // 返回LinkedList的模板数组。所谓模板数组,即可以将T设为任意的数据类型
563     public <T> T[] toArray(T[] a) {
564         // 若数组a的大小 < LinkedList的元素个数(意味着数组a不能容纳LinkedList中全部元素)
565         // 则新建一个T[]数组,T[]的大小为LinkedList大小,并将该T[]赋值给a。
566         if (a.length < size)
567             a = (T[])java.lang.reflect.Array.newInstance(
568                                 a.getClass().getComponentType(), size);
569         // 将链表中所有节点的数据都添加到数组a中
570         int i = 0;
571         Object[] result = a;
572         for (Entry<E> e = header.next; e != header; e = e.next)
573             result[i++] = e.element;
574
575         if (a.length > size)
576             a[size] = null;
577
578         return a;
579     }
580
581
582     // 克隆函数。返回LinkedList的克隆对象。
583     public Object clone() {
584         LinkedList<E> clone = null;
585         // 克隆一个LinkedList克隆对象
586         try {
587             clone = (LinkedList<E>) super.clone();
588         } catch (CloneNotSupportedException e) {
589             throw new InternalError();
590         }
591
592         // 新建LinkedList表头节点
593         clone.header = new Entry<E>(null, null, null);
594         clone.header.next = clone.header.previous = clone.header;
595         clone.size = 0;
596         clone.modCount = 0;
597
598         // 将链表中所有节点的数据都添加到克隆对象中
599         for (Entry<E> e = header.next; e != header; e = e.next)
600             clone.add(e.element);
601
602         return clone;
603     }
604
605     // java.io.Serializable的写入函数
606     // 将LinkedList的“容量,所有的元素值”都写入到输出流中
607     private void writeObject(java.io.ObjectOutputStream s)
608         throws java.io.IOException {
609         // Write out any hidden serialization magic
610         s.defaultWriteObject();
611
612         // 写入“容量”
613         s.writeInt(size);
614
615         // 将链表中所有节点的数据都写入到输出流中
616         for (Entry e = header.next; e != header; e = e.next)
617             s.writeObject(e.element);
618     }
619
620     // java.io.Serializable的读取函数:根据写入方式反向读出
621     // 先将LinkedList的“容量”读出,然后将“所有的元素值”读出
622     private void readObject(java.io.ObjectInputStream s)
623         throws java.io.IOException, ClassNotFoundException {
624         // Read in any hidden serialization magic
625         s.defaultReadObject();
626
627         // 从输入流中读取“容量”
628         int size = s.readInt();
629
630         // 新建链表表头节点
631         header = new Entry<E>(null, null, null);
632         header.next = header.previous = header;
633
634         // 从输入流中将“所有的元素值”并逐个添加到链表中
635         for (int i=0; i<size; i++)
636             addBefore((E)s.readObject(), header);
637     }
638
639 }   

几点总结

关于LinkedList的源码,给出几点比较重要的总结:

1、从源码中很明显可以看出,LinkedList的实现是基于双向循环链表的,且头结点中不存放数据,如下图;

2、注意两个不同的构造方法。无参构造方法直接建立一个仅包含head节点的空链表,包含Collection的构造方法,先调用无参构造方法建立一个空链表,而后将Collection中的数据加入到链表的尾部后面。

3、在查找和删除某元素时,源码中都划分为该元素为null和不为null两种情况来处理,LinkedList中允许元素为null。

4、LinkedList是基于链表实现的,因此不存在容量不足的问题,所以这里没有扩容的方法。

5、注意源码中的Entry<E> entry(int index)方法。该方法返回双向链表中指定位置处的节点,而链表中是没有下标索引的,要指定位置出的元素,就要遍历该链表,从源码的实现中,我们看到这里有一个加速动作。源码中先将index与长度size的一半比较,如果index<size/2,就只从位置0往后遍历到位置index处,而如果index>size/2,就只从位置size往前遍历到位置index处。这样可以减少一部分不必要的遍历,从而提高一定的效率(实际上效率还是很低)。

6、注意链表类对应的数据结构Entry。如下;

  1. // 双向链表的节点所对应的数据结构。
  2. // 包含3部分:上一节点,下一节点,当前节点值。
  3. private static class Entry<E> {
  4. // 当前节点所包含的值
  5. E element;
  6. // 下一个节点
  7. Entry<E> next;
  8. // 上一个节点
  9. Entry<E> previous;
  10. /**
  11. * 链表节点的构造函数。
  12. * 参数说明:
  13. *   element  —— 节点所包含的数据
  14. *   next      —— 下一个节点
  15. *   previous —— 上一个节点
  16. */
  17. Entry(E element, Entry<E> next, Entry<E> previous) {
  18. this.element = element;
  19. this.next = next;
  20. this.previous = previous;
  21. }
  22. }

7、LinkedList是基于链表实现的,因此插入删除效率高,查找效率低(虽然有一个加速动作)。
    8、要注意源码中还实现了栈和队列的操作方法,因此也可以作为栈、队列和双端队列来使用。

原文地址:https://www.cnblogs.com/kdy11/p/8780430.html

时间: 2024-10-08 17:30:19

LinkedList源码剖析的相关文章

【源码】LinkedList源码剖析

//----------------------------------------------------------- 转载请注明出处:http://blog.csdn.net/chdjj by Rowandjj 2014/8/8 //---------------------------------------------------------- 注:以下源码基于jdk1.7.0_11 上一篇我们分析了ArrayList,今天我们再来看下LinkedList. 首先上一幅框架图: Lin

转:【Java集合源码剖析】LinkedList源码剖析

转载请注明出处:http://blog.csdn.net/ns_code/article/details/35787253   您好,我正在参加CSDN博文大赛,如果您喜欢我的文章,希望您能帮我投一票,谢谢! 投票地址:http://vote.blog.csdn.net/Article/Details?articleid=35568011 LinkedList简介 LinkedList是基于双向循环链表(从源码中可以很容易看出)实现的,除了可以当做链表来操作外,它还可以当做栈.队列和双端队列来使

【Java集合源码剖析】LinkedList源码剖析

转载请注明出处:http://blog.csdn.net/ns_code/article/details/35787253 LinkedList简介 LinkedList是基于双向循环链表(从源码中可以很容易看出)实现的,除了可以当做链表来操作外,它还可以当做栈.队列和双端队列来使用. LinkedList同样是非线程安全的,只在单线程下适合使用. LinkedList实现了Serializable接口,因此它支持序列化,能够通过序列化传输,实现了Cloneable接口,能被克隆. Linked

【小笨鸟看JDK1.7集合源码之三】LinkedList源码剖析

LinkedList简介 (1)基于双向循环链表的结构,实现了Deque接口,可以用作堆栈.队列或双端队列使用: (2)实现为非同步的,即在多线程下是不安全的,单线程安全: (3)实现了Cloneable.Serializable,可以克隆与被序列化: JDK1.7-LinkedList源码详细分析 1 package java.util; 2 /** 3 * JDK1.7 4 * @author foolishbird_lmy 5 * 为了便于观察分析,我调整了一些方法的位置,相应的私有方法我

Java类集框架之LinkedList源码剖析

LinkedList LinkedList基于双向循环链表实现.也可以被当做堆栈,队列或双端队列进行操作.非线程安全.下面直接贴ArrayList的Java实现(只贴了部分代码),来源JDK1.8.0_25/src.zip. /** * ****双向链表对应的数据结构********* * 包含:节点值item * 前驱 pre * 后继next * @param <E> */ private static class Node<E> { E item; Node<E>

Java HashSet和HashMap源码剖析

转自: Java HashSet和HashMap源码剖析 总体介绍 之所以把HashSet和HashMap放在一起讲解,是因为二者在Java里有着相同的实现,前者仅仅是对后者做了一层包装,也就是说HashSet里面有一个HashMap(适配器模式).因此本文将重点分析HashMap. HashMap实现了Map接口,允许放入null元素,除该类未实现同步外,其余跟Hashtable大致相同,跟TreeMap不同,该容器不保证元素顺序,根据需要该容器可能会对元素重新哈希,元素的顺序也会被重新打散,

Java ArrayList源码剖析

转自: Java ArrayList源码剖析 总体介绍 ArrayList实现了List接口,是顺序容器,即元素存放的数据与放进去的顺序相同,允许放入null元素,底层通过数组实现.除该类未实现同步外,其余跟Vector大致相同.每个ArrayList都有一个容量(capacity),表示底层数组的实际大小,容器内存储元素的个数不能多于当前容量.当向容器中添加元素时,如果容量不足,容器会自动增大底层数组的大小.前面已经提过,Java泛型只是编译器提供的语法糖,所以这里的数组是一个Object数组

【Java集合源码剖析】LinkedHashmap源码剖析

LinkedHashMap简介 LinkedHashMap是HashMap的子类,与HashMap有着同样的存储结构,但它加入了一个双向链表的头结点,将所有put到LinkedHashmap的节点一一串成了一个双向循环链表,因此它保留了节点插入的顺序,可以使节点的输出顺序与输入顺序相同. LinkedHashMap可以用来实现LRU算法(这会在下面的源码中进行分析). LinkedHashMap同样是非线程安全的,只在单线程环境下使用. LinkedHashMap源码剖析 LinkedHashM

【源码】ArrayList源码剖析

//-------------------------------------------------------------------- 转载请注明出处:http://blog.csdn.net/chdjj by Rowandjj 2014/8/7 //-------------------------------------------------------------------- 从这篇文章开始,我将对java集合框架中的一些比较重要且常用的类进行分析.这篇文章主要介绍的是Array