loj 6277 6280 数列分块入门 1 4

参考:「分块」数列分块入门1 – 9 by hzwer

1

Description

给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,单点查值

思路

用\(tag\)记录每个块整体的增量。

Code

#include <bits/stdc++.h>
#define maxn 50010
#define F(i, a, b) for (int i = (a); i < (b); ++i)
#define F2(i, a, b) for (int i = (a); i <= (b); ++i)
#define dF(i, a, b) for (int i = (a); i > (b); --i)
#define dF2(i, a, b) for (int i = (a); i >= (b); --i)
using namespace std;
typedef long long LL;
int n, blo, a[maxn], tag[maxn], bl[maxn];
void add(int l, int r, int c) {
    F2(i, l, min((bl[l]+1)*blo-1, r)) a[i] += c;
    if (bl[l] != bl[r]) {
        F2(i, bl[r]*blo, r) a[i] += c;
    }
    F2(i, bl[l]+1, bl[r]-1) tag[i] += c;
}
int main() {
    scanf("%d", &n); blo = sqrt(n);
    F(i, 0, n) scanf("%d", &a[i]), bl[i] = i / blo;
    F(i, 0, n) {
        int op, l, r, c;
        scanf("%d%d%d%d", &op, &l, &r, &c); --l, --r;
        if (op) printf("%d\n", a[r]+tag[bl[r]]);
        else add(l, r, c);
    }
    return 0;
}

4

Description

给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,区间求和。

思路

法一:树状数组

\(delta\)差分数组:\(delta[i]\)记录\([i,n]\)整体的增量。

则\[\begin{aligned}sum[x]&=\sum_{i=1}^{x}a_i+\sum_{i=1}^{x}d_i*(x-i+1)\\&=\sum_{i=1}^{x}a_i+(x+1)*\sum_{i=1}^{x}d_i-\sum_{i=1}^{x}i*d_i\end{aligned}\]

维护三个树状数组即可。

法二:分块

用\(tag\)记录每个块整体的增量。

用\(sum\)维护每个块的和。

Code

Ver. 1

#include <bits/stdc++.h>
#define maxn 50010
#define F(i, a, b) for (LL i = (a); i < (b); ++i)
#define F2(i, a, b) for (LL i = (a); i <= (b); ++i)
#define dF(i, a, b) for (LL i = (a); i > (b); --i)
#define dF2(i, a, b) for (LL i = (a); i >= (b); --i)
using namespace std;
typedef long long LL;
LL n, x, v[maxn], d[maxn], D[maxn];
inline LL lowbit(LL x) { return x & (-x); }
inline LL sum(LL* a, LL x, LL mod) { LL ret = 0; while (x) (ret += a[x]) %= mod, x -= lowbit(x); return ret; }
inline void add(LL* a, LL x, LL c) { while (x<=n) a[x] += c, x += lowbit(x); }
inline LL query(LL x, LL mod) {
    return ((sum(v, x, mod) + (x+1) * sum(d, x, mod) % mod) % mod + mod - sum(D, x, mod)) % mod;
}
inline void modify(LL l, LL r, LL c) {
    add(d, l, c), add(d, r+1, -c);
    add(D, l, c*l), add(D, r+1, -c*(r+1));
}
int main() {
    scanf("%lld", &n);
    F2(i, 1, n) scanf("%lld", &x), add(v, i, x);
    F(i, 0, n) {
        LL op, l, r, c, mod;
        scanf("%lld%lld%lld%lld", &op, &l, &r, &c); mod=c+1;
        if (op) printf("%lld\n", (query(r,mod)+mod-query(l-1,mod))%mod);
        else modify(l, r, c);
    }
    return 0;
}

Ver. 2

#include <bits/stdc++.h>
#define maxn 50010
#define F(i, a, b) for (LL i = (a); i < (b); ++i)
#define F2(i, a, b) for (LL i = (a); i <= (b); ++i)
#define dF(i, a, b) for (LL i = (a); i > (b); --i)
#define dF2(i, a, b) for (LL i = (a); i >= (b); --i)
using namespace std;
typedef long long LL;
LL blo, a[maxn], bl[maxn], sum[maxn], tag[maxn];
void modify(LL l, LL r, LL c) {
    F(i, l, min((bl[l]+1)*blo, r+1)) a[i] += c;
    sum[bl[l]] += c * (min((bl[l]+1)*blo,r+1) - l);
    if (bl[l]!=bl[r]) {
        F2(i, bl[r]*blo, r) a[i] += c;
        sum[bl[r]] += c * (r+1 - bl[r]*blo);
    }
    F(i, bl[l]+1, bl[r]) tag[i] += c, sum[i] += c * blo;
}
LL query(LL l, LL r, LL mod) {
    LL ret=0;
    F(i, l, min((bl[l]+1)*blo, r+1)) (ret += a[i]) %= mod;
    (ret += tag[bl[l]] * (min((bl[l]+1)*blo,r+1) - l) % mod) %= mod;
    if (bl[l] != bl[r]) {
        F2(i, bl[r]*blo, r) (ret += a[i]) %= mod;
        (ret += tag[bl[r]] * (r+1 - bl[r]*blo) % mod) %= mod;
    }
    F(i, bl[l]+1, bl[r]) (ret += sum[i]) %= mod;
    return ret;
}
int main() {
    LL n;
    scanf("%lld", &n); blo = sqrt(n);
    F(i, 0, n) scanf("%lld", &a[i]), bl[i] = i/blo;
    LL num = (n+blo-1) / blo;
    F(i, 0, num-1) {
        F(j, i*blo, (i+1)*blo) sum[i] += a[j];
    }
    F(j, (num-1)*blo, min(num*blo, n+1)) sum[num-1] += a[j];
    F(i, 0, n) {
        LL op, l, r, c;
        scanf("%lld%lld%lld%lld", &op, &l, &r, &c); --l, --r;
        if (op) printf("%lld\n", query(l, r, c+1));
        else modify(l, r, c);
    }
    return 0;
}

原文地址:https://www.cnblogs.com/kkkkahlua/p/8446317.html

时间: 2024-11-09 20:39:57

loj 6277 6280 数列分块入门 1 4的相关文章

loj 6278 6279 数列分块入门 2 3

参考:「分块」数列分块入门1 – 9 by hzwer 2 Description 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,询问区间内小于某个值\(x\)的元素个数. 思路 每个块内保持升序排列. 则块外暴力统计,块内二分查找分界点. 一些注意点,如: 要记录下标: 块外暴力修改完之后需要再排序: 在块内二分查找的值是\(c-tag[i]\)而非\(c\). Code #include <bits/stdc++.h> #define maxn 50010 #def

Loj 6280 数列分块入门 4

链接:https://loj.ac/problem/6280 思路: 多设置一个数组sum去存区间值的和就好了,因为数据范围比较大,需要开long long . 实现代码; #include<bits/stdc++.h> using namespace std; #define ll long long const ll M = 1e5+10; ll sum[M],a[M],tag[M],bl[M],n,block; void update(ll l,ll r,ll c){ for(ll i

#6280. 数列分块入门 4 #6281. 数列分块入门 5

题目描述 给出一个长为 n 的数列,以及 n 个操作,操作涉及区间加法,区间求和. 输入格式 第一行输入一个数字 n. 第二行输入 n 个数字,第 i 个数字为 ai?,以空格隔开. 接下来输入 n 行询问,每行输入四个数字 opt.l.r.c,以空格隔开. 若 opt=0,表示将位于 [l,r]的之间的数字都加 c. 若 opt=1,表示询问位于 [l,r]的所有数字的和 ?mod(c+1). 输出格式 对于每次询问,输出一行一个数字表示答案. 样例 样例输入 4 1 2 2 3 0 1 3

LOJ#6284. 数列分块入门 8

#6284. 数列分块入门 8 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计讨论 1 测试数据 题目描述 给出一个长为 nnn 的数列,以及 nnn 个操作,操作涉及区间询问等于一个数 ccc 的元素,并将这个区间的所有元素改为 ccc. 输入格式 第一行输入一个数字 nnn. 第二行输入 nnn 个数字,第 i 个数字为 aia_ia?i??,以空格隔开. 接下来输入 nnn 行询问,每行输入三个数字 ll

数列分块入门1-9 LibreOJ

数列分块入门1-9 LibreOJ 我也不知道为什么一个大二的ACM选手没学分块. 我怎么记得大一的时候,学长教给我的分块就只有 block 和 num 两个变量来着...好吧,应该是我没认真学.正好前两天朋友给学弟开课,乘机去蹭了一节课.然后...我还是不会哇,菜的一逼塌糊涂. 还是卿学姐好哇,多听几遍,睡得贼香. 分块原理 分块嘛,其实就是优雅的暴力,和莫队(不会)有点异曲同工的赶脚.通过将数组分成小块以降低复杂度. 通常情况下: 每个块的大小(block)为 \(\sqrt{n}\) 块数

LibreOJ6279. 数列分块入门 3 题解

题目链接:https://loj.ac/problem/6279 题目描述 给出一个长为 \(n\) 的数列,以及 \(n\) 个操作,操作涉及区间加法,询问区间内小于某个值 \(x\) 的前驱(比其小的最大元素). 输入格式 第一行输入一个数字 \(n\). 第二行输入 \(n\) 个数字,第 \(i\) 个数字为 \(a_i\),以空格隔开. 接下来输入 \(n\) 行询问,每行输入四个数字 \(opt\).\(l\).\(r\).\(c\),以空格隔开. 若 \(opt=0\),表示将位于

LOJ6277~6285 数列分块入门

Portals 分块需注意的问题 数组大小应为\(N+\sqrt N\),因为最后一个块可能会超出\(N\)的范围.改成记录\(blk,fr,to\)就不用担心这个了 当操作的区间在一个块内时,要特判成暴力修改. 要清楚什么时候应该+tag[t] 最后一个块是越界的,注意是否有影响 数列分块入门 1 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,单点查值. //数列分块入门 1 #include <cstdio> #include <cmath> inlin

数列分块入门

分块是 莫队 算法的前置知识,也是一种十分 暴力 的数据结构. 分块的核心思想是把要操作的数列 \(a_i\) 分成若干长度相等的"块":修改/查询时对于整一块都在指定区间 \([L,R]\) 内的块整体修改/查询,对于只有块的一部分在指定区间内的暴力修改/查询. 由于不需要操作/查询具有 区间加法 等性质,分块比线段树.树状数组.ST表等数据结构具有更加灵活的应用. 先来看一道例题 数列分块入门 4,简而言之,就是要求实现区间加法&区间查询:线段树可以很轻松地实现这两个操作,

数列分块入门5 解题报告

占坑QAQ 数列分块系列目录 数列分块入门1 数列分块入门2 数列分块入门3 数列分块入门4 数列分块入门5 <- 数列分块入门6 数列分块入门7 数列分块入门8 数列分块入门9 蒲公英 公主的朋友 原文地址:https://www.cnblogs.com/louhancheng/p/10051160.html