caffe的python接口学习(4)mnist实例手写数字识别

以下主要是摘抄denny博文的内容,更多内容大家去看原作者吧  

一 数据准备

  准备训练集和测试集图片的列表清单;

  二 导入caffe库,设定文件路径

  

# -*- coding: utf-8 -*-

import caffe
from caffe import layers as L,params as P,proto,to_proto
#设定文件的保存路径
root=‘/home/xxx/‘                           #根目录
train_list=root+‘mnist/train/train.txt‘     #训练图片列表
test_list=root+‘mnist/test/test.txt‘        #测试图片列表
train_proto=root+‘mnist/train.prototxt‘     #训练配置文件
test_proto=root+‘mnist/test.prototxt‘       #测试配置文件
solver_proto=root+‘mnist/solver.prototxt‘   #参数文件

其中train.txt 和test.txt文件已经有了,其它三个文件,我们需要自己编写。

此处注意:一般caffe程序都是先将图片转换成lmdb文件,但这样做有点麻烦。因此我就不转换了,我直接用原始图片进行操作,所不同的就是直接用图片操作,均值很难计算,因此可以不减均值。

  三 生成配置文件

  

配置文件实际上就是一些txt文档,只是后缀名是prototxt,我们可以直接到编辑器里编写,也可以用代码生成。此处,我用python来生成。

#编写一个函数,生成配置文件prototxt
def Lenet(img_list,batch_size,include_acc=False):
    #第一层,数据输入层,以ImageData格式输入
    data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,
        transform_param=dict(scale= 0.00390625))
    #第二层:卷积层
    conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type=‘xavier‘))
    #池化层
    pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
    #卷积层
    conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type=‘xavier‘))
    #池化层
    pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
    #全连接层
    fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type=‘xavier‘))
    #激活函数层
    relu3=L.ReLU(fc3, in_place=True)
    #全连接层
    fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type=‘xavier‘))
    #softmax层
    loss = L.SoftmaxWithLoss(fc4, label)

    if include_acc:             # test阶段需要有accuracy层
        acc = L.Accuracy(fc4, label)
        return to_proto(loss, acc)
    else:
        return to_proto(loss)

def write_net():
    #写入train.prototxt
    with open(train_proto, ‘w‘) as f:
        f.write(str(Lenet(train_list,batch_size=64)))

    #写入test.prototxt
    with open(test_proto, ‘w‘) as f:
        f.write(str(Lenet(test_list,batch_size=100, include_acc=True)))

配置文件里面存放的,就是我们所说的network。我这里生成的network,可能和原始的Lenet不太一样,不过影响不大。

  四 生成solver文件

  

同样,可以在编辑器里面直接书写,也可以用代码生成。

#编写一个函数,生成参数文件
def gen_solver(solver_file,train_net,test_net):
    s=proto.caffe_pb2.SolverParameter()
    s.train_net =train_net
    s.test_net.append(test_net)
    s.test_interval = 938    #60000/64,测试间隔参数:训练完一次所有的图片,进行一次测试
    s.test_iter.append(100)  #10000/100 测试迭代次数,需要迭代100次,才完成一次所有数据的测试
    s.max_iter = 9380       #10 epochs , 938*10,最大训练次数
    s.base_lr = 0.01    #基础学习率
    s.momentum = 0.9    #动量
    s.weight_decay = 5e-4  #权值衰减项
    s.lr_policy = ‘step‘   #学习率变化规则
    s.stepsize=3000         #学习率变化频率
    s.gamma = 0.1          #学习率变化指数
    s.display = 20         #屏幕显示间隔
    s.snapshot = 938       #保存caffemodel的间隔
    s.snapshot_prefix =root+‘mnist/lenet‘   #caffemodel前缀
    s.type =‘SGD‘         #优化算法
    s.solver_mode = proto.caffe_pb2.SolverParameter.GPU    #加速
    #写入solver.prototxt
    with open(solver_file, ‘w‘) as f:
        f.write(str(s))

  

  五 开始训练模型

  

训练过程中,也在不停的测试。

#开始训练
def training(solver_proto):
    caffe.set_device(0)
    caffe.set_mode_gpu()
    solver = caffe.SGDSolver(solver_proto)
    solver.solve()

最后,调用以上的函数就可以了。

if __name__ == ‘__main__‘:
    write_net()
    gen_solver(solver_proto,train_proto,test_proto)
    training(solver_proto)

  六 完成的python文件

  

mnist.py

我将此文件放在根目录下的mnist文件夹下,因此可用以下代码执行

sudo python mnist/mnist.py

在训练过程中,会保存一些caffemodel。多久保存一次,保存多少次,都可以在solver参数文件里进行设置。

我设置为训练10 epoch,9000多次,测试精度可以达到99%

原文地址:https://www.cnblogs.com/niulang/p/8985621.html

时间: 2024-10-13 17:20:47

caffe的python接口学习(4)mnist实例手写数字识别的相关文章

keras实现mnist数据集手写数字识别

一. Tensorflow环境的安装 这里我们只讲CPU版本,使用 Anaconda 进行安装 a.首先我们要安装 Anaconda 链接:https://pan.baidu.com/s/1AxdGi93oN9kXCLdyxOMnRA 密码:79ig 过程如下: 第一步:点击next 第二步:I Agree 第三步:Just ME 第四步:自己选择一个恰当位置放它就好 第五步:建议只选择第二个 第六步:就直接install啦啦啦啦,然后你就可以上手万能库了 b.找到Anaconda prompt

tensorflow 基础学习五:MNIST手写数字识别

MNIST数据集介绍: from tensorflow.examples.tutorials.mnist import input_data # 载入MNIST数据集,如果指定地址下没有已经下载好的数据,tensorflow会自动下载数据 mnist=input_data.read_data_sets('.',one_hot=True) # 打印 Training data size:55000. print("Training data size: {}".format(mnist.

手把手教你搭建caffe及手写数字识别(全程命令提示、纯小白教程)

手把手教你搭建caffe及手写数字识别 作者:七月在线课程助教团队,骁哲.小蔡.李伟.July时间:二零一六年十一月九日交流:深度学习实战交流Q群 472899334,有问题可以加此群共同交流.另探究实验背后原理,请参看此课程:11月深度学习班. 一.前言 在前面的教程中,我们搭建了tensorflow.torch,教程发布后,大家的问题少了非常多.但另一大框架caffe的问题则也不少,加之caffe也是11月深度学习班要讲的三大框架之一,因此,我们再把caffe的搭建完整走一遍,手把手且全程命

Python 手写数字识别-knn算法应用

在上一篇博文中,我们对KNN算法思想及流程有了初步的了解,KNN是采用测量不同特征值之间的距离方法进行分类,也就是说对于每个样本数据,需要和训练集中的所有数据进行欧氏距离计算.这里简述KNN算法的特点: 优点:精度高,对异常值不敏感,无数据输入假定 缺点:计算复杂度高,空间复杂度高 适用数据范围:数值型和标称型(具有有穷多个不同值,值之间无序)    knn算法代码: #-*- coding: utf-8 -*- from numpy import * import operatorimport

利用手写数字识别项目详细描述BP深度神经网络的权重学习

本篇文章是针对学习<深度学习入门>(由日本学者斋藤康毅所著陆羽杰所译)中关于神经网络的学习一章来总结归纳一些收获. 本书提出神经网络的学习分四步:1.mini-batch 2.计算梯度 3.更新参数 4.重复前面步骤 1.从识别手写数字项目学习神经网络 所谓“从数据中学习”是指 可以由数据#自动决定权重#.当解决较为简单的问题,使用简单的神经网络时,网络里的权重可以人为的手动设置,去提取输入信息中特定的特征.但是在实际的神经网络中,参数往往是成千上万,甚至可能上亿的权重,这个时候人为手动设置是

深度学习面试题12:LeNet(手写数字识别)

目录 神经网络的卷积.池化.拉伸 LeNet网络结构 LeNet在MNIST数据集上应用 参考资料 LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务.自那时起,CNN的最基本的架构就定下来了:卷积层.池化层.全连接层.如今各大深度学习框架中所使用的LeNet都是简化改进过的LeNet-5(-5表示具有5个层),和原始的LeNet有些许不同,比如把激活函数改为了现在很常用的ReLu. 神经网络的卷积.池化.拉伸 前面讲了卷积和池化,卷积层可以从图像中提取特

使用Caffe进行手写数字识别执行流程解析

之前在 http://blog.csdn.net/fengbingchun/article/details/50987185 中仿照Caffe中的examples实现对手写数字进行识别,这里详细介绍下其执行流程并精简了实现代码,使用Caffe对MNIST数据集进行train的文章可以参考  http://blog.csdn.net/fengbingchun/article/details/68065338 : 1.   先注册所有层,执行layer_factory.hpp中类LayerRegis

[深度学习]受限玻尔兹曼机生成手写数字训练样本分析

基于能量的模型(EBM) 基于能量的模型将每一个我们感兴趣的变量构造联系到一个标量能量上. 学习就是修改能量方程从而使得它的外形有我们需要的特点. 举例来说, 我们希望的是: 期望构造的能量低. 基于能量的概率性模型定义了一个概率分布, 它是由能量方程决定的: 归一化因子Z被称为配分函数, 类比于物理系统. 基于能量的模型可以通过SGD(随机梯度下降)算法基于数据的负值对数相似性(NLL)学习得到. 对于对数回归我们首先定义了对数相似性, 之后是损耗函数, 即 负值对数相似性(NLL). 使用随

Pytorch入门实战一:LeNet神经网络实现 MNIST手写数字识别

记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表的一片Twitter,调侃道:l've been using PyTorch a few months now, l've never felt better, l've more energy.My skin is clearer. My eye sight has improved.确实,使用p