[BZOJ5251][九省联考2018]劈配(网络流)

5251: [2018多省省队联测]劈配

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 33  Solved: 22
[Submit][Status][Discuss]

Description

一年一度的综艺节目《中国新代码》又开始了。

Zayid从小就梦想成为一名程序员,他觉得这是一个展示自己的舞台,于是他毫不犹豫地报名了。

题目描述

轻车熟路的Zayid顺利地通过了海选,接下来的环节是导师盲选,这一阶段的规则是这样的:

总共n名参赛选手(编号从1至n)每人写出一份代码并介绍自己的梦想。接着由所有导师对这些选手进行排名。

为了避免后续的麻烦,规定不存在排名并列的情况。

同时,每名选手都将独立地填写一份志愿表,来对总共m位导师(编号从1至m)作出评价。

志愿表上包含了共m档志愿。

对于每一档志愿,选手被允许填写最多C位导师,每位导师最多被每位选手填写一次(放弃某些导师也是被允许的)。

在双方的工作都完成后,进行录取工作。

每位导师都有自己战队的人数上限,这意味着可能有部分选手的较高志愿、甚至是全部志愿无法得到满足。节目组对”

前i名的录取结果最优“作出如下定义:

前1名的录取结果最优,当且仅当第1名被其最高非空志愿录取(特别地,如果第1名没有填写志愿表,那么该选手出局)。

前i名的录取结果最优,当且仅当在前i-1名的录取结果最优的情况下:第i名被其理论可能的最高志愿录取

(特别地,如果第i名没有填写志愿表、或其所有志愿中的导师战队均已满员,那么该选手出局)。

如果一种方案满足‘‘前n名的录取结果最优’’,那么我们可以简称这种方案是最优的。

举例而言,2位导师T老师、F老师的战队人数上限分别都是1人;2位选手Zayid、DuckD分列第1、2名。

那么下面3种志愿表及其对应的最优录取结果如表中所示:

可以证明,对于上面的志愿表,对应的方案都是唯一的最优录取结果。

每个人都有一个自己的理想值si,表示第i位同学希望自己被第si或更高的志愿录取,如果没有,那么他就会非常沮丧。

现在,所有选手的志愿表和排名都已公示。巧合的是,每位选手的排名都恰好与它们的编号相同。

对于每一位选手,Zayid都想知道下面两个问题的答案:

在最优的录取方案中,他会被第几志愿录取。

在其他选手相对排名不变的情况下,至少上升多少名才能使得他不沮丧。

作为《中国新代码》的实力派代码手,Zayid当然轻松地解决了这个问题。

不过他还是想请你再算一遍,来检验自己计算的正确性。

Input

每个测试点包含多组测试数据

第一行2个用空格隔开的非负整数T;C,分别表示数据组数、每档志愿最多允许填写的导师数目。

接下来依次描述每组数据,对于每组数据:

第1行两个用空格隔开的正整数n;m。

n;m分别表示选手的数量、导师的数量。

第2行m个用空格隔开的正整数:其中第i个整数为bi。

Bi表示编号为i的导师战队人数的上限。

第3行至第n+2行,每行m个用空格隔开的非负整数:其中第i+2行左起第j个数为ai,j

ai,j表示编号为i的选手将编号为j的导师编排在了第ai,j志愿。特别地,如果ai,j=0,则表示该选手没有将该导师填入志愿表。

在这一部分,保证每行中不存在某一个正数出现超过C次(0可能出现超过C次),同时保证所有ai,j<=m。

第n+3行n个用空格隔开的正整数,其中第i个整数为Si

Si表示编号为i的选手的理想值。

在这一部分,保证Si<=m。

T<=5,m<=n<=200,Bi<=N

Output

按顺序输出每组数据的答案。对于每组数据,输出2行:

第1行输出n个用空格隔开的正整数,其中第i个整数的意义为:

在最优的录取方案中,编号为i的选手会被该档志愿录取。

特别地,如果该选手出局,则这个数为m+1。

第2行输出n个用空格隔开的非负整数,其中第i个整数的意义为:

使编号为i的选手不沮丧,最少需要让他上升的排名数。

特别地,如果该选手一定会沮丧,则这个数为i。

Sample Input

3 5
2 2
1 1
2 2
1 2
1 1
2 2
1 1
1 2
1 2
2 1
2 2
1 1
0 1
0 1
2 2

Sample Output

2 1
1 0
1 2
0 1
1 3
0 1
三组数据分别与【题目描述】中的三个表格对应。
对于第1 组数据:由于选手1 没有填写第一志愿,所以他一定无法被第一志愿录取,也就一定会沮丧。
选手2 按原排名就不沮丧,因此他不需要提升排名。
对于第2 组和第3 组数据:1 号选手都不需要提升排名。
而希望被第一志愿录取 的2 号选手都必须升到第1 名才能如愿。

HINT

原题面:www.lydsy.com/JudgeOnline/upload/201804/day2(3).pdf

Source

[Submit][Status][Discuss]

D2唯一有区分度的题。。正解好像有4种,下面说一个Dinic做法。

首先如果你非常巧妙地避开了所有有关二分图和网络流的思路,你也可以通过各种数据分治拿到70分,但是码量感觉不可想象。

先之考虑第一问,第二问实在不行二分答案或者暴力枚举跑m次第一问就好。

看原题面可以看到b[i]=1的50分,这启发我们想到二分图,因为每个选手对应一位导师,而匈牙利算法正好保证了每次增广都保证前面的选手都能匹配上。那么b[i]>1的怎么处理呢?不就是网络流嘛,直接将导师的点向汇点连容量为b[i]的边就好了。

考虑具体做法,对于当前考虑的选手,每次向一组导师全部连边,如果增广成功则考虑下一个选手。

怎么证明是对的呢?首先我们知道网络流每次能够增广当且仅当流量能变大,所以在增广这个点的同时不可能让前面所有的选手找不到匹配,所以我们一边加边一边跑Dinic即可。

至于第二问,第一反应肯定是二分答案然后暴力重建图,这样好像是可以过的,但是

原文地址:https://www.cnblogs.com/HocRiser/p/8746793.html

时间: 2024-10-03 19:47:48

[BZOJ5251][九省联考2018]劈配(网络流)的相关文章

[八省联考2018] 劈配

题目背景 一年一度的综艺节目<中国新代码>又开始了.Zayid 从小就梦想成为一名程序员,他觉得这是一个展示自己的舞台,于是他毫不犹豫地报名了. 题目描述 轻车熟路的Zayid 顺利地通过了海选,接下来的环节是导师盲选,这一阶段的规则是这样的: 总共n 名参赛选手(编号从1 至n)每人写出一份代码并介绍自己的梦想.接着 由所有导师对这些选手进行排名.为了避免后续的麻烦,规定不存在排名并列的情况. 同时,每名选手都将独立地填写一份志愿表,来对总共 m 位导师(编号从 1 至 m)作出评价.志愿表

洛谷P4382 [八省联考2018]劈配(网络流,二分答案)

洛谷题目传送门 说不定比官方sol里的某理论最优算法还优秀一点? Orz良心出题人,暴力有70分2333 思路分析 正解的思路很巧妙,其实我并不觉得这是个正儿八经的网络流或者二分图匹配的题目,主要还是个思维+建图模型+乱搞...... \(C=1\)时我们就可以对于每个人直接匹配而不会影响到后面的选择了.但是\(C>1\)的话,可能某一个人可以选多个导师,当他随便选了其中一个以后,可能影响到后面某个人使其选不到本来的最优解.而此时后面那个人就要让前面那个人改变决策,做出反悔. 这时候有没有想到网

【BZOJ5248】【九省联考2018】一双木棋(搜索,哈希)

[BZOJ5248][九省联考2018]一双木棋(搜索,哈希) 题面 BZOJ Description 菲菲和牛牛在一块n行m列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手.棋局开始时,棋盘上没有任何棋子, 两人轮流在格子上落子,直到填满棋盘时结束.落子的规则是:一个格子可以落子当且仅当这个格子内没有棋子且 这个格子的左侧及上方的所有格子内都有棋子. 棋盘的每个格子上,都写有两个非负整数,从上到下第i行中从左到右第j列的格子上的两个整数记作Aij.Bij.在 游戏结束后,菲菲和牛牛会分别计算自己

[luogu] P4364 [九省联考2018]IIIDX(贪心)

P4364 [九省联考2018]IIIDX 题目背景 Osu 听过没?那是Konano 最喜欢的一款音乐游戏,而他的梦想就是有一天自己也能做个独特酷炫的音乐游戏.现在,他在世界知名游戏公司KONMAI 内工作,离他的梦想也越来越近了. 这款音乐游戏内一般都包含了许多歌曲,歌曲越多,玩家越不易玩腻.同时,为了使玩家在游戏上氪更多的金钱花更多的时间,游戏一开始一般都不会将所有曲目公开,有些曲目你需要通关某首特定歌曲才会解锁,而且越晚解锁的曲目难度越高. 题目描述 这一天,Konano 接到了一个任务

九省联考 2018 游记

Day0:乘火车到了上海.明天就是激动人心的比赛啦 深夜和室友看<我在七年后等你>.这真是一款不错的手游,让人印象深刻啊 Day1:迷迷糊糊到了学校.编程环境是Win7?不太习惯啊. T1:一眼状压dp题. T2:肯定可以建成一棵树,然后直接贪心?不对啊,T2不应该这么水啊(开始怀疑) T3:乍一看怎么一点思路没有啊. 8:40~11:10:持续思考T3中. 11:10:终于有思路了!如果直接NTT向上dp的话,因为链的情况复杂度会不对,所以似乎可以树剖!用线段树分治和NTT处理重链上的dp!

[BZOJ5248][九省联考2018]双木棋chess

bzoj luogu sol 首先,要保证一个格子的左边和上方都放满了棋子,就需要这个点的左上方那个矩形都放满了棋子. 这样放旗子状态就会是一个自左下至右上的轮廓线. 状态数? 跟\(yyb,ppl\)讨论了一下状态数理论上应该是\(C_{20}^{10}\)啊. 然而... #include<cstdio> #include<algorithm> using namespace std; int n,m,a[20],tot; void dfs(int u) { if (u==n+

[九省联考 2018]一双木棋chess

Description 题库链接 给出一个 \(n\times m\) 的棋盘,棋盘的每个格子有两个权值 \(A,B\) . Alice 和 Bob 轮流操作在棋盘上放棋子,一个格子能放棋子的前提条件是这个格子的左侧和上侧均放了棋子.对于 Alice 放棋子的格子,能获得该格子的 \(A\) 的权值:对于 Bob 放棋子的格子,能获得该格子的 \(B\) 的权值. Alice 想最大化得分差, Bob 想最小化得分差,求最后得分差. \(1\leq n,m\leq 10\) Solution 比

[九省联考 2018]IIIDX

Description 题库链接 给你 \(n+1\) 个节点的一棵树,节点编号为 \(0\sim n\) , \(0\) 为根.边集为 \(\mathbb{E}=\left\{(u,v)\big|\forall i\in[1,n],\left(\left\lfloor\frac{i}{k}\right\rfloor,i\right)\right\}\) .给出 \(n\) 个待选序号,让你为 \(1\sim n\) 这 \(n\) 个节点编号,第 \(i\) 号节点编为 \(a_i\),要求父

[九省联考2018]林克卡特树(DP+wqs二分)

对于k=0和k=1的点,可以直接求树的直径. 然后对于60分,有一个重要的转化:就是求在树中找出k+1条点不相交的链后的最大连续边权和. 这个DP就好.$O(nk^2)$ 然后我们完全不可以想到,将best[k](选择k条链的答案)打表输出,更不可能然后作差分,发现得到的数组是递减的. 这说明:best[k]是一个上凸包. 于是我们可以二分一个斜率去切这个凸包(类似导数),根据切点横坐标与k的大小旋转直线(改变斜率). 考虑给你一个直线斜率k,怎么找到它和凸包的切点.实际上就相当于将这个凸函数减