基于深度学习的图像分类中代码的error

Image classifaction with deep learning

在本次的project中我利用NVIDIA DIGITS网页版深度学习框架实现深度神经网络的简单可视化训练和设计,但出现过很多error

1、搭环境问题

我在Ubuntu的系统下进行配置,安装cuda、cudnn、caffe及其相关依赖

错误一:

make all -j8出现错误

/usr/bin/ld: cannot find -lhdf5_hl

/usr/bin/ld: cannot find -lhdf5

collect2: error: ld returned 1 exit stat

改正方法是更改makefile

将LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf更改为

LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial

错误二:

/sbin/ldconfig.real: /usr/lib/nvidia-375/libEGL.so.1 不是符号连接

/sbin/ldconfig.real: /usr/lib32/nvidia-375/libEGL.so.1 不是符号连接

错误原因系统找到的是符号连接而不是文件

错误三:

build_release/lib/libcaffe.so: undefined reference to google::protobuf::internal::WireFormatLite::WriteStringMaybeAliased(int, std::string const&, google::protobuf::io::CodedOutputSt

更改方法为设置环境变量:LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu/:$LD_LIBRARY_PATH,将/usr/lib/x86_64-linux-gnu/放在最前面

2、DIGITS的使用

A、实验准确度太低:

原因是数据集过少,将数据集进行预处理,进行旋转对称操作,一幅图变4幅

B、创建数据库失败

应用create_lmdb.sh生成train和test两个不可读文件,创建lmdb数据库

C、过拟合问题

采用dropout方法。这个方法在神经网络里面很常用。dropout方法是ImageNet中提出的一种方法,通俗一点讲就是dropout方法在训练的时候让神经元以一定的概率不工作。

原文地址:https://www.cnblogs.com/sqblogs/p/8550041.html

时间: 2024-12-21 03:09:24

基于深度学习的图像分类中代码的error的相关文章

车万翔《基于深度学习的自然语言处理》中英文PDF+涂铭《Python自然语言处理实战核心技术与算法》PDF及代码

自然语言处理是人工智能领域的一个重要的研究方向,是计算机科学与语言学的交叉学科.随着互联网的快速发展,网络文本尤其是用户生成的文本呈爆炸性增长,为自然语言处理带来了巨大的应用需求.但是由于自然语言具有歧义性.动态性和非规范性,同时语言理解通常需要丰富的知识和一定的推理能力,为自然语言处理带来了极大的挑战. 近年来快速发展的深度学习技术为解决自然语言处理问题的解决提供了一种可能的思路,已成为有效推动自然语言处理技术发展的变革力量. 推荐将深度学习理论运用至NLP中的资料<基于深度学习的自然语言处理

4. 基于深度学习的目标检测算法的综述(转)

4. 基于深度学习的目标检测算法的综述(转) 原文链接:https://www.cnblogs.com/zyly/p/9250195.html 目录 一 相关研究 1.选择性搜索(Selective Search) 2.OverFeat 二.基于区域提名的方法 1.R-CNN 2.SPP-Net 3.Fast R-CNN 4.Faster R-CNN 5.R-FCN 三 端对端的方法 1.YOLO 2.SSD 四 总结 在前面几节中,我们已经介绍了什么是目标检测,以及如何进行目标检测,还提及了滑

基于深度学习的目标检测研究进展

前言 开始本文内容之前,我们先来看一下上边左侧的这张图,从图中你看到了什么物体?他们在什么位置?这还不简单,图中有一个猫和一个人,具体的位置就是上图右侧图像两个边框(bounding-box)所在的位置.其实刚刚的这个过程就是目标检测,目标检测就是"给定一张图像或者视频帧,找出其中所有目标的位置,并给出每个目标的具体类别". 目标检测对于人来说是再简单不过的任务,但是对于计算机来说,它看到的是一些值为0~255的数组,因而很难直接得到图像中有人或者猫这种高层语义概念,也不清楚目标出现在

TensorFlow实现基于深度学习的图像补全

目录 ■ 简介 ■ 第一步:将图像理解为一个概率分布的样本 你是怎样补全缺失信息的呢? 但是怎样着手统计呢?这些都是图像啊. 那么我们怎样补全图像?  ■ 第二步:快速生成假图像 在未知概率分布情况下,学习生成新样本 [ML-Heavy] 生成对抗网络(Generative Adversarial Net, GAN) 的架构 使用G(z)生成伪图像 [ML-Heavy] 训练DCGAN 现有的GAN和DCGAN实现 [ML-Heavy] 在Tensorflow上构建DCGANs 在图片集上跑DC

深度学习在图像识别中的研究进展与展望

深度学习在图像识别中的研究进展与展望 深度学习是近十年来人工智能领域取得的最重要的突破之一.它在语音识别.自然语言处理.计算机视觉.图像与视频分析.多媒体等诸多领域都取得了巨大成功.本文将重点介绍深度学习在物体识别.物体检测.视频分析的最新研究进展,并探讨其发展趋势. 1.深度学习发展历史的回顾 现在的深度学习模型属于神经网络.神经网络的历史可以追溯到上世纪四十年代,曾经在八九十年代流行.神经网络试图通过大脑认知的机理,解决各种机器学习的问题.1986年Rumelhart.Hinton和Will

深度学习与计算机视觉(12)_tensorflow实现基于深度学习的图像补全

原文地址:Image Completion with Deep Learning in TensorFlow by Brandon Amos 原文翻译与校对:@MOLLY && 寒小阳 ([email protected]) 时间:2017年4月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/52665396 声明:版权所有,转载请联系作者并注明出 简介 第一步:将图像理解为一个概率分布的样本 你是怎样补全缺失信息的呢? 但是怎

基于深度学习的图像语义编辑

深度学习在图像分类.物体检测.图像分割等计算机视觉问题上都取得了很大的进展,被认为可以提取图像高层语义特征.基于此,衍生出了很多有意思的图像应用. 为了提升本文的可读性,我们先来看几个效果图. 图1. 图像风格转换 图2. 图像修复,左上图为原始图,右下图为基于深度学习的图像 图3. 换脸,左图为原图,中图为基于深度学习的算法,右图为使用普通图像编辑软件的效果 图4. 图像超清化效果图,从左到右,第一张为低清图像三次插值结果,第二张残差网络的效果,第三张为使用对抗神经网络后的结果,第四张为原图.

人脸识别---基于深度学习和稀疏表达的人脸识别算法

介绍 基于深度学习和稀疏表达的人脸识别算法 1 利用VGGFace提取人脸特征 2 PCA对人脸特征进行降维 3 稀疏表达的人脸匹配 Code 1 介绍 本文将介绍一种基于深度学习和稀疏表达的人脸识别算法.首先,利用深度学习框架(VGGFace)提取人脸特征:其次,利用PCA对提取的特征进行降维:最后,利用稀疏表达分类实现特征匹配.我采用CMC曲线评价在AR数据库上的识别性能.最后我还提供了整个过程的code. 2 基于深度学习和稀疏表达的人脸识别算法 2.1 利用VGGFace提取人脸特征 下

【王晓刚】深度学习在图像识别中的研究进展与展望

深度学习是近十年来人工智能领域取得的最重要的突破之一.它在语音识别.自然语言处理.计算机视觉.图像与视频分析.多媒体等诸多领域都取得了巨大成功.本文将重点介绍深度学习在物体识别.物体检测.视频分析的最新研究进展,并探讨其发展趋势. 1. 深度学习发展历史的回顾 现有的深度学习模型属于神经网络.神经网络的历史可追述到上世纪四十年代,曾经在八九十年代流行.神经网络试图通过模拟大脑认知的机理,解决各种机器学习的问题.1986 年Rumelhart,Hinton 和Williams 在<自然>发表了著