HDU1423 最长公共上升子序列LCIS

Problem Description

This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.

Input

Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.

Output

output print L - the length of the greatest common increasing subsequence of both sequences.

Sample Input

1 5 1 4 2 5 -12 4 -12 1 2 4

Sample Output

2

Source

ACM暑期集训队练习赛(二)

Recommend

lcy

分析:经典的LCIS问题,用dp求解,既然问题是LIS+LCS,那么状态转移方程肯定是结合了这两道题的。观察一下这两道题的方程有啥特点LIS中的状态是以某一位结尾的,LCS中的表示到第几位,那么LCIS就要把这两个特点结合起来,一维表示到第几位,一维表示以某一位结尾,那么设f[i][j]表示a中前i个和b中前j个的LCIS,并且以b[j]结尾,显然如果a[i] != b[j],那么f[i][j] = f[i-1][j],否则f[i][j] = max{f[i-1][k]} (1 <= k < j && b[k] < b[j]),三重循环,复杂度要爆表了.

考虑一下能不能只用两重循环,找最大值的部分,我们要找到b[k] < b[j]的最大值f[i-1][k],我们能不能不枚举k呢?注意到我们每次枚举j的时候都是重复找了最大值的,如果a[i] > b[k]了,就更新最大值,因为我们要用最大值来更新a[i] = b[k]的情况,既然a[i]都大于b[k]了,那么自然b[k] < b[k‘],因为都是顺序枚举的,保证都会更新到.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int inf = 0x7ffffff;

int t,l1,l2,a[510],b[510],f[510][510],ans,maxx;

int main()
{
    scanf("%d",&t);
    while (t--)
    {
    memset(f,0,sizeof(f));
    ans = 0;
       scanf("%d",&l1);
       for (int i = 1; i <= l1; i++)
       scanf("%d",&a[i]);
       scanf("%d",&l2);
       for (int i = 1; i <= l2; i++)
       scanf("%d",&b[i]);
    for (int i = 1; i <= l1; i++)
    {
    maxx = 0;
    for (int j = 1; j <= l2; j++)
    {
        f[i][j] = f[i - 1][j];
        if (a[i] > b[j])
        maxx = max(maxx,f[i-1][j]);
        if (a[i] == b[j])
        f[i][j] = maxx + 1;
    }
    }
    for (int i = 1; i <= l2; i++)
    ans = max(ans,f[l1][i]);
    if (t != 0)
    printf("%d\n\n",ans);
    else
    printf("%d\n",ans);
    }

    return 0;
}
时间: 2024-10-07 06:01:06

HDU1423 最长公共上升子序列LCIS的相关文章

最长公共上升子序列(LCIS)ZOJ 2432

立方算法: #include<cstdio> #include<iostream> #include<algorithm> #include<cstring> #define M 505 using namespace std; typedef long long LL; LL a[M],b[M]; int dp[M][M]; int main() { //freopen("in.txt","r",stdin); in

动态规划——最长公共上升子序列LCIS

问题 给定两个序列A和B,序列的子序列是指按照索引逐渐增加的顺序,从原序列中取出若干个数形成的一个子集,若子序列的数值大小是逐渐递增的则为上升子序列,若A和B取出的两个子序列A1和B1是相同的,则A1/B1为A和B的公共子序列.求出A和B的最长公共上升子序列. 分析     结合最长公共子序列和最长上升子序列来解决这个问题,定义状态dp[i][j]表示A串中前i个字符和B串中前j个字符且以B[j]为结尾的最长公共上升子序列的长度.则有状态转移方程:[在进行动态规划状态的设计的时候,要简单.详尽的

HDU-1423 最长公共上升子序列(LCIS)

问题描述: 给定两个字符串x, y, 求它们公共子序列s, 满足si < sj ( 0 <= i < j < |s|).要求S的长度是所有条件序列中长度最长的. 做过最长公共子序列应该更容易明白了. 定义状态d[i][j]表示以a数组的前i个元素,b数组的前j个元素并且以b[j]为结尾的LCIS的长度. 首先:a[i] != b[j]时, d[i][j] = d[i-1][j]; 因为 d[i][j] 是以 b[j] 为结尾的LCIS,如果 d[i][j] > 0 那么就说明

最长公共上升子序列||LCIS

1 #include<cstdio> 2 #include<iostream> 3 #include<cstdlib> 4 #include<cmath> 5 #include<vector> 6 #include<algorithm> 7 #include<cstring> 8 #include<vector> 9 #include<map> 10 #include<stack> 11

Codeforces 10D LCIS 求最长公共上升子序列及输出这个子序列 dp

题目链接:点击打开链接 题意: 给定n长的一个序列 再给定k长的一个序列 求LCIS并输出这个子序列 如有多解输出任意解.. = - = 敲的时候听着小曲儿pre的含义还没有想清楚,万万没想到就过了... #include<stdio.h> #include<iostream> #include<string.h> #include<set> #include<vector> #include<map> #include<mat

HDU 4512 吉哥系列故事——完美队形I(LCIS最长公共上升子序列)

http://acm.hdu.edu.cn/showproblem.php?pid=4512 题意: 吉哥这几天对队形比较感兴趣. 有一天,有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2] ... h[n],吉哥希望从中挑出一些人,让这些人形成一个新的队形,新的队形若满足以下三点要求,则称之为完美队形: 1.挑出的人保持他们在原队形的相对顺序不变: 2.左右对称,假设有m个人形成新的队形,则第1个人和第m个人身高相同,第2个人和第m-1个人身高相同,依此类推,当然,如果m是奇数,

最长公共上升子序列(LCIS)问题的O(n^2)解法

J - 病毒 Time Limit:3000MS     Memory Limit:131072KB     64bit IO Format:%lld & %llu Submit Status Practice CSU 1120 Appoint description:  System Crawler  (2015-01-04) Description 你有一个日志文件,里面记录着各种系统事件的详细信息.自然的,事件的时间戳按照严格递增顺序排列(不会有两个事件在完全相同的时刻发生). 遗憾的是,

HDU ACM 4512 吉哥系列故事——完美队形I -&gt;LCIS最长公共递增子序列

分析:最长公共递增子序列,把数据反向存储一遍,求正反两组数据的LCIS.另外注意边界的条件判断.还有如果取出的新队列有奇数个人或偶数个人要单独判断. #include<iostream> using namespace std; #define max(a,b) ((a)>(b)?(a):(b)) int dp[202]; int a[202]; int b[202]; int LCIS(int n) { int i,j,maxlen,ans; memset(dp,0,sizeof(dp

[CodeForces10D]LCIS(最长公共上升子序列) - DP

Description 给定两个数列,求最长公共上升子序列,并输出其中一种方案. Input&Output Input 第一行一个整数n(0<n<=500),数列a的长度. 第二行n个空格隔开的整数,数列a的元素. 第三行一个整数m,数据范围同n,数列b的长度. 第四行m个空格隔开的整数,意义同第二行. Output 第一行一个整数k,LCIS的长度. 第二行k个空格隔开的整数,其中一种方案. Solution 对于这类问题我们通常有两种转移方式,一种是以i结尾的数列,另一种是前i个数