基于核化相关滤波器的跟踪-效果直逼Struck和TLD跟踪器

原文:http://cvlab.hanyang.ac.kr/tracker_benchmark_v10.html

作者ECCV2012的文章就被我关注过,速度惊人的快。2015年新作出来了。发文以供同行参阅。

Kernelized Correlation Filters

Jo?o F. Henriques, Rui Caseiro, Pedro Martins, Jorge Batista

ECCV 2012, TPAMI 2015

Qualitative comparison of the proposed KCF tracker with other state-of-the-art trackers, TLD and Struck, on a benchmark of 50 videos. The proposed method is much faster and admits a considerably simpler implementation.

The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled
sample patches.

Such sets of samples are riddled with redundancies — any overlapping pixels are constrained to be the same. Based on this simple observation, we propose an analytic model for datasets of thousands of translated patches.

By showing that the resulting data matrix is circulant, we can diagonalize it with the Discrete Fourier Transform, reducing both storage and computation by several orders of magnitude. Interestingly, for linear regression our formulation is equivalent to
a correlation filter, used by some of the fastest competitive trackers. For kernel regression, however, we derive a new Kernelized Correlation Filter (KCF), that unlike other kernel algorithms has the exact same complexity as its linear counterpart. Building
on it, we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call Dual Correlation Filter (DCF).

Both KCF and DCF outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented in a few lines of code. To encourage further developments, our tracking framework was
made open-source.

Video. You can view an example video on YouTube here. It is for the ECCV‘12 version of the tracker, which only supported a single channel. In the precision plot below, it corresponds to the "KCF on raw pixels" curve. The new version ("KCF/DCF on HOG") is significantly improved.

Source code. Below you can download the Matlab code (both the ECCV‘12 and the new version), the Python port byRodrigo Benenson, and the Java port by Peter Abeles (as
part of theBoofCV library).

Precision at different thresholds for 4 variants of the proposed method (in bold) on a 50 videos benchmark.

High-Speed Tracking with Kernelized Correlation Filters

J. F. Henriques, R. Caseiro, P. Martins, J. Batista

TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015

Paper (PDF)

Preprint onarXiv (2014)

Code version 2 (Matlab)

Reference (Bibtex)

Exploiting the Circulant Structure of Tracking-by-detection with Kernels

J. F. Henriques, R. Caseiro, P. Martins, J. Batista

ECCV - European Conference on Computer Vision, 2012

Paper (PDF)

Code version 1 (Matlab)

Code (Python)

Code (Java /doc)

Poster (PDF)

Supplement (PDF)

More properties (PDF)

Reference (Bibtex)

时间: 2024-10-28 16:31:18

基于核化相关滤波器的跟踪-效果直逼Struck和TLD跟踪器的相关文章

【目标跟踪: 相关滤波器 一】闭关归来, 先挖个坑

前言 从2015年12月份开始闭关修炼, 潜心研究目标跟踪领域的相关滤波器, 如今终于算是可以暂时告一段落. 现在的我相比去年的我而言, 自我感觉虽然算不上脱胎换骨, 但是的的确确学习了很多知识, 在机器视觉领域终于不再是一个青涩的还未过门的小鸟雏, 现在的这只小鸟, 已经可以跌跌撞撞的起飞. 以这篇博文为分界线, 之前的博文在我现在看来真是图样图森破, 各位看官大可以忽略之前的博文. 从今天起, 会尽量抽出闲暇时间认认真真的写博客, 把这段时间的研究成果与心得分享给大家. 今天先挖个坑, 内容

04(2) 基于上下文相关的GMM-HMM声学模型2之参数共享

1.三音素建模存在的问题 问题一:很多三音素在训练数据中没有出现(尤其跨词三音素) 问题二:在训练数据中出现过的三音素有相当一部分出现的频次较少 因此,三音素模型训练时存在较严重的数据不足问题 2.参数共享 1)何为参数共享? 对于一个HMM模型来说,有如下参数: 两个模型之间参数共享,意为: 如: 共享转移概率: 共享状态输出分布: 2)共享可以在不同的层次上进行 (1)共享高斯---tied mixtures 所有分布共享相同的高斯集合,但拥有不同的混合权重 (2)共享状态---state

04(1) 基于上下文相关的GMM-HMM声学模型1

1.上下文对音素发音的语谱轨迹的影响 受到上下文的影响,同一个音素的发音语谱轨迹不同 为提高识别准确率,对音素建模时应将这种上下文影响考虑在内 2.基于上下文相关的音素建模 注意,非单音素建模中,每个模型依旧代表一个音素,只是考虑了这个音素的上下文关系而已 1)双音素diphones 考虑上个音素/下个音素对当前音素的影响 对于ROCK: 两个??分别取决于ROCK的前一个单词的最后一个音素和后一个单词的第一个音素 灰色的边界单元为邻近单词所共享 为语法/词序列中观察到的前后音素的每个组合构建单

一款基于jquery的手风琴图片展示效果

今天要给大家分享一款基于jquery的手风琴图片展示效果.这款图片的展示效果鼠标经过前是灰色的,当鼠标经过时图片变大且变为彩色.效果图如下: 在线预览   源码下载 实现的代码. html代码: <div class="page-container"> <div class="flex-container"> <div class="country netherlands"> <div> Nethe

基于jQuery图片缩放tab切换效果

基于jQuery图片缩放tab切换效果 上图: 主要效果是一个切换的效果,鼠标移动进行效果切换,兼容IE8.360.FireFox.Chrome.Safari.Opera.傲游.搜狗.世界之窗等 预览地址:http://www.qhttl.com/content/view/2014/07/23/jiaoben92/jiaoben92/index.html 基于jQuery图片缩放tab切换效果

基于Rebound制造绚丽的动画效果-入门篇

基于Rebound制造绚丽的动画效果-入门篇 Rebound是什么? Rebound是一个来自 Facebook 公司的 Java物理和动画库.Rebound spring 模型可用于创建动画,让你感觉很自然. Rebound的运作原理是什么? Rebound拥有两个参数:tension.friction. tension是张力,拉力. friction是摩擦力. 演示: tension:50,friction:1 rebound_t50_f1.gif 拉力为50时,摩擦为1.摩擦对拉力的损耗十

基于jQuery+JSON的省市联动效果

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-

基于jQuery遮罩图片hover翻转效果

基于jQuery遮罩图片hover翻转效果.这是一款基于jQuery+css3实现的鼠标经过遮罩图片翻转特效.效果图如下: 在线预览   源码下载 实现的代码. html代码: <div class="index_hd"> <div class="fr hd_r major-list-outer"> <ul class="major-list"> <li class="major-item&qu

比微软kinect更强的视频跟踪算法--TLD跟踪算法介绍

转自:http://blog.csdn.net/carson2005/article/details/7647500 TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生在其攻读博士学位期间提出的一种新的单目标长时间(long term tracking)跟踪算法.该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生的形变.部分遮挡等问题.同时,通过一种改进的在线学习机制不断更新跟踪模块的“显著特征