The 35 Kevin durant best kd relase in history and kd 7 bhm only $100
It’s hard to ignore all the chatter going on regarding Kevin Durant’s undecided allegiance to a sneaker brand. It’s still a tug-of-war of sorts between Nike and Under Armour, a brand that has rapidly emerged as a possible front-runner in the KD sweepstakes thanks to their deep pockets and DC headquarters. Nothing regarding Durant’s decision has been confirmed yet, although there are small tidbits of info that may or may not reveal what the defending NBA MVP has his heart set on. Regardless of whether Kevin re-ups with Nike or begins a new era at Under Armour, his tenure with the Swoosh has been a memorable one for many reasons – his sneakers being one of them.
The Nike KD signature line has evolved before our eyes, starting from a relatively bargain-priced selection to perhaps the most popular sig shoe on the planet. The recently unveiled KD 7 only added to the momentum, but soon enough we’ll discover if that forward movement comes to a complete halt or continues strong without skipping a beat. In any case, we’ve decided to take a look back at the Nike KD legacy and pick out the thirty-five best in history, in order since 2007.
Here’s a first look at the Nike KD 7 “BHM” that is likely to release during the month of February, the observed Black History Month of the calendar year. This simple colorway makes use of a two-toned white and black with some pixelated graphics on the Posite and the Swoosh, with a BHM logo placed on the mid-foot strap. The question is – is the KD 7 “BHM” a $100 Premium release like the upcoming navy/gold pair?
Nike KD 7 “BHM”
Color: Black/White-Wolf Grey
Style Code: 718817-010
Release Date: 01/24/15
Price: $100
The 35 Kevin durant best kd relase in history and kd 7 bhm only $100
时间: 2024-10-10 09:50:48
The 35 Kevin durant best kd relase in history and kd 7 bhm only $100的相关文章
Nike KD 6 MVP ID For Sale 2014
Kevin Durant may be the 2014 National basketball association KD 6 MVP, and NIKEiD is honoring having a exclusive edition of his Nike KD Mire. Fast Money Sniper's first MVP award has inspired the most recent personalization option using the Nike KD Mi
Check back what the kd 6 for more info
Representing a shout-to his fans in China, the What the KD 6 may be the product of NIKEiD's Player Edition Program. Kevin Durant carried the kicks last Friday inside a rout from the Nets in the Barclays Center in Brooklyn, by which he obtained 26 poi
KD树
什么是KD树 Kd-树是K-dimension tree的缩写,是对数据点在k维空间(如二维(x,y),三维(x,y,z),k维(x,y,z..))中划分的一种数据结构,主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索).本质上说,Kd-树就是一种平衡二叉树. 首先必须搞清楚的是,k-d树是一种空间划分树,说白了,就是把整个空间划分为特定的几个部分,然后在特定空间的部分内进行相关搜索操作.想像一个三维空间,kd树按照一定的划分规则把这个三维空间划分了多个空间,如下图所示: KD树的构建
从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任)
初学kd树
一开始不会kd树的时候,感觉kd树一定很神,学了kd树发现kd树挺好写. kd树的每个节点有一个分割超平面,我是以深度%维数作为当前这一维的分割,比较时对于当前节点就比较这一维. 附上模板代码,求平面第k近距离(kd树裸题) 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<queue> 6 #include&l
kd树的创建和求最近邻
1 import numpy as np 2 arr = np.array([[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]]) 3 arr.shape 4 5 class KDTree(): 6 def __init__(self): 7 self.value = None 8 self.left = None 9 self.right = None 10 self.axis = None 11 12 def create(arr, k, h=0)
[转载]kd tree
[本文转自]http://www.cnblogs.com/eyeszjwang/articles/2429382.html k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 应用背景 SIFT算法中做特征点匹配的时候就会利用到k-d树.而特征点匹配实际上就是一个通过距离函数在高维矢量之间进行相似性检索的问题.针对如何快速而准确地找到查询点的近邻,现在提出了很多高维空间索引结构和近似查询的算法,k-d树
【特征匹配】SIFT原理之KD树+BBF算法解析
继上一篇中已经介绍了SIFT原理点击打开链接,最后得到了一系列特征点,每个特征点对应一个128维向量.假如现在有两副图片都已经提取到特征点,现在要做的就是匹配上相似的特征点. 相似性查询有两种基本方式:1.范围查询:即给点查询点和查询阈值,从数据集中找出所有与查询点距离小于阈值的点. 2.K近邻查询:给点查询点及正整数K,从数据集中找到与查询点最近的K个数据,当K=1时,就是最近邻查询. 特征匹配算子可以分为两类:1.穷举法:即将数据集中的点与查询点逐一计算距离,如果图1提取到N1个特征点,图2
k-d tree算法详解
k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 1.应用背景 SIFT算法中做特征点匹配的时候就会利用到k-d树.而特征点匹配实际上就是一个通过距离函数在高维矢量之间进行相似性检索的问题.针对如何快速而准确地找到查询点的近邻,现在提出了很多高维空间索引结构和近似查询的算法,k-d树就是其中一种. 索引结构中相似性查询有两种基本的方式:一种是范围查询(range searches),另一种是K近邻查询