多个变量的线性回归

多元线性回归也被称为多元线性回归。

我们现在介绍方程的符号,我们可以有任意数量的输入变量。

xj(i):第i个训练样本中的第j个变量。

x(i):第i个训练样本中的变量。

m:训练样本的数量。

n:变量的个数。

容纳这些多个特征的假设函数的多变量形式如下:

为了开发这个功能的直觉,我们可以想一想,θ0作为房子的基本价格,θ1每平方米的价格,θ2每层楼的价格,等X1将在房子的平方米数,x2楼层数,等等。

利用矩阵乘法的定义,我们的多变量假设函数可以简洁地表示为:

这是对一个训练例子的假设函数的矢量化。

备注:请注意,为了方便起见,我们假设。这允许我们做矩阵运算与θ和X使两向量的θ和X(我)互相匹配元素(即有相同数目的元素:N + 1)]

时间: 2024-10-14 20:01:11

多个变量的线性回归的相关文章

单变量的线性回归问题(1)

1.Model representation 首先来看一个简单的学习算法—线性回归,通过对线性回归模型的分析可以了解有监督学习算法的过程. 先看一个房价预测的问题,我们利用一个城市的房价信息集,来预测房屋价格和房屋面积的关系. 根据图中信息,我们如何预测面积为1250的房屋的销售价格?很直接的方法就是在图中画一条尽可能满足各个点的直线,在找到1250在该线上对应的值. 这是一个简单的有监督学习算法,因为图中的点是确定的.有监督学习中会有一系列已知的数据,上面的例子中就是图中所对应的点,我们称这些

斯坦福大学Andrew Ng - 机器学习笔记(1) -- 单变量&多变量线性回归

大概用了一个月,Andrew Ng老师的机器学习视频断断续续看完了,以下是个人学习笔记,入门级别,权当总结.笔记难免有遗漏和误解,欢迎讨论. 鸣谢:中国海洋大学黄海广博士提供课程视频和个人笔记,在此深表感谢!

跟着Andrew Ng挑战Machine Learning:第一周 —— 概念+单一变量线性回归

声明: 开个新坑,督促自己坚持学习.这个系列同样是学习心得以及总结,用到的资料都是从吴恩达大神在Coursera上的课程中摘下来的.另外,依照Coursera的要求,保证学员的学习质量,在这一系列心得中不会出现与Coursera习题答案有关的代码. 为了帮助自己更深刻的理解,除了一些人名.引用或者算法的缩写,比如'BFGS'.'L-BFGS'等等之外,尽量使用中文.这一系列的文章结构都是按照大神的课程来的,理解成翻译其实也没毛病. 什么是机器学习? 有很多种说法,大致意思都是:"机器学习是用数据

【stanford 机器学习】学习笔记(1)--单变量线性回归

课程来自斯坦福大学吴恩达教授 machine learning: https://www.coursera.org/learn/machine-learning/home/welcome 1) Model representation(模型表示) 回到房屋价格预测问题, 首先它是一个有监督学习的问题(对于每个样本的输入,都有正确的输出或者答案),同时它也是一个回归问题(预测一个实值输出).训练集表示如下: 其中: m = 训练样本的数目 x’s = “输入”变量,也称之为特征 y’s = “输出

机器学习【第二篇】单变量线性回归

吴恩达机器学习笔记整理--单变量线性回归 通过模型分析,拟合什么类型的曲线. 一.基本概念 1.训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示,其中(x,y)是一个训练样本,训练集中每一行表示一个训练样本;(x^i,y^i)表示第i个训练样本. 2.假设函数h 使用某种学习算法对训练集的数据进行训练, 我们可以得到假设函数(Hypothesis Function), 如下图所示. 在房价的例子中,假设函数就是一个房价关于房子面

机器学习入门:线性回归及梯度下降

机器学习入门:线性回归及梯度下降 本文会讲到: (1)线性回归的定义 (2)单变量线性回归 (3)cost function:评价线性回归是否拟合训练集的方法 (4)梯度下降:解决线性回归的方法之一 (5)feature scaling:加快梯度下降执行速度的方法 (6)多变量线性回归   Linear Regression 注意一句话:多变量线性回归之前必须要Feature Scaling! 方法:线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个

《BI那点儿事》Microsoft 线性回归算法

原文:<BI那点儿事>Microsoft 线性回归算法 Microsoft 线性回归算法是 Microsoft 决策树算法的一种变体,有助于计算依赖变量和独立变量之间的线性关系,然后使用该关系进行预测.该关系采用的表示形式是最能代表数据序列的线的公式.例如,以下关系图中的线是数据最可能的线性表示形式. 关系图中的每个数据点都有一个与该数据点与回归线之间距离关联的错误.回归方程式中的系数 a 和 b 可以调整回归线的角度和位置.可以对 a 和 b 进行调整,直到与所有点都关联的错误总数达到最低值

【转】从线性回归到CNN

原地址:http://zhangliliang.com/2014/06/14/from-lr-to-cnn/ csdn:    http://blog.csdn.net/t0903/article/details/41825667 前言 本文大致分成两大部分,第一部分尝试将本文涉及的分类器统一到神经元类模型中,第二部分阐述卷积神经网络(CNN)的发展简述和目前的相关工作.本文涉及的分类器(分类方法)有: 线性回归 逻辑回归(即神经元模型) 神经网络(NN) 支持向量机(SVM) 卷积神经网络(C

【Python数据挖掘课程】五.线性回归知识及预测糖尿病实例

今天主要讲述的内容是关于一元线性回归的知识,Python实现,包括以下内容:        1.机器学习常用数据集介绍        2.什么是线性回顾        3.LinearRegression使用方法        4.线性回归判断糖尿病        前文推荐:       [Python数据挖掘课程]一.安装Python及爬虫入门介绍       [Python数据挖掘课程]二.Kmeans聚类数据分析及Anaconda介绍       [Python数据挖掘课程]三.Kmean