Trie树-字典查找

描述

小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进。

这一天,他们遇到了一本词典,于是小Hi就向小Ho提出了那个经典的问题:“小Ho,你能不能对于每一个我给出的字符串,都在这个词典里面找到以这个字符串开头的所有单词呢?

身经百战的小Ho答道:“怎么会不能呢!你每给我一个字符串,我就依次遍历词典里的所有单词,检查你给我的字符串是不是这个单词的前缀不就是了?

小Hi笑道:“你啊,还是太年轻了!~假设这本词典里有10万个单词,我询问你一万次,你得要算到哪年哪月去?”

小Ho低头算了一算,看着那一堆堆的0,顿时感觉自己这辈子都要花在上面了...

小Hi看着小Ho的囧样,也是继续笑道:“让我来提高一下你的知识水平吧~你知道树这样一种数据结构么?”

小Ho想了想,说道:“知道~它是一种基础的数据结构,就像这里说的一样!”

小Hi满意的点了点头,说道:“那你知道我怎么样用一棵树来表示整个词典么?”

小Ho摇摇头表示自己不清楚。

提示一:Trie树的建立

“你看,我们现在得到了这样一棵树,那么你看,如果我给你一个字符串ap,你要怎么找到所有以ap开头的单词呢?”小Hi又开始考校小Ho。

“唔...一个个遍历所有的单词?”小Ho还是不忘自己最开始提出来的算法。

“笨!这棵树难道就白构建了!”小Hi教训完小Ho,继续道:“看好了!”

提示二:如何使用Trie树

提示三:在建立Trie树时同时进行统计!

“那么现在!赶紧去用代码实现吧!”小Hi如是说道

输入

输入的第一行为一个正整数n,表示词典的大小,其后n行,每一行一个单词(不保证是英文单词,也有可能是火星文单词哦),单词由不超过10个的小写英文字母组成,可能存在相同的单词,此时应将其视作不同的单词。接下来的一行为一个正整数m,表示小Hi询问的次数,其后m行,每一行一个字符串,该字符串由不超过10个的小写英文字母组成,表示小Hi的一个询问。

在20%的数据中n, m<=10,词典的字母表大小<=2.

在60%的数据中n, m<=1000,词典的字母表大小<=5.

在100%的数据中n, m<=100000,词典的字母表大小<=26.

本题按通过的数据量排名哦~

输出

对于小Hi的每一个询问,输出一个整数Ans,表示词典中以小Hi给出的字符串为前缀的单词的个数。

样例输入

5
babaab
babbbaaaa
abba
aaaaabaa
babaababb
5
babb
baabaaa
bab
bb
bbabbaab

样例输出

1
0
3
0
0
import java.util.Scanner;

public class Main {
    static class TrieNode {
        boolean isWord;
        int count;
        TrieNode[] next=new TrieNode[26];

        public TrieNode() {
            isWord = false;
            count = 0;
        }
    }
    // 插入单词
    public static void insert(String str,TrieNode root) {
        char[] strArr = str.toCharArray();
        TrieNode temp = root;
        for (int i = 0; i < strArr.length; i++) {
            if (temp.next[strArr[i] - ‘a‘] == null) {
                // 子树为空
                TrieNode newNode = new TrieNode();
                temp.next[strArr[i] - ‘a‘] = newNode;
            }
            temp.count++;
            temp = temp.next[strArr[i] - ‘a‘];
        }
        temp.isWord=true;
    }

    // 检索单词的个数
    public static int query(String str,TrieNode root) {
        TrieNode temp=root;
        char[] strArr=str.toCharArray();
        int length=strArr.length;
        for(int i=0;i<length;i++){
            if(temp.next[strArr[i]-‘a‘]==null){
                //没有该索引
                return 0;
            }else
                temp=temp.next[strArr[i]-‘a‘];
        }
        return temp.count;
    }

    public static void main(String[] args) {

        TrieNode root=new TrieNode();
        Scanner scanner=new Scanner(System.in);
        int[] ans = null;
            int dataRecordNum=scanner.nextInt();
            while(dataRecordNum>=1){
                insert(scanner.next(), root);
                dataRecordNum--;
            }
            int testRecordNum=scanner.nextInt();
            //保存结果的数组,长度为testRecordNum
            ans=new int[testRecordNum];
            while(testRecordNum>=1){
                ans[5-testRecordNum]=query(scanner.next(), root);
                testRecordNum--;
            }
        for(int i=0;i<ans.length;i++){
            System.out.println(ans[i]);
        }

    }

}
时间: 2024-10-12 16:36:22

Trie树-字典查找的相关文章

Trie树&mdash;字典树(单词查找树)

Trie树,又称字典树,单词查找树.它来源于retrieval(检索)中取中间四个字符构成的.用于存储大量的字符串以便支持快速模式匹配.主要应用在信息检索领域. Trie有三种结构:标准Trie(standard trie),压缩Trie,后缀Trie(suffix trie). 1.标准Trie 标准Trie树的结构:所有含有公共前缀的字符串将挂在树中同一个结点下.实际上trie简明的存储于串集合汇总的所有公共前缀.加入有这样一个字符串集合X{bear,bell,bid,bull,buy,se

剑指Offer——Trie树(字典树)

剑指Offer--Trie树(字典树) Trie树 Trie树,即字典树,又称单词查找树或键树,是一种树形结构,是一种哈希树的变种.典型应用是统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.它的优点是:最大限度地减少无谓的字符串比较,查询效率比哈希表高. Trie的核心思想是空间换时间.利用字符串的公共前缀来降低查询时间的开销以达到提高效率的目的. Trie树也有它的缺点,Trie树的内存消耗非常大.当然,或许用左儿子右兄弟的方法建树的话,可能会好点.可见,优

Hash树(散列树)和Trie树(字典树、前缀树)

1.Hash树 理想的情况是希望不经过任何比较,一次存取便能得到所查的记录, 那就必须在记的存储位置和它的关键字之间建立一个确定的对应关系f,使每个关键字和一个唯一的存储位置相对应.因而在查找时,只要根据这个对应关系f找到 给定值K的像f(K).由此,不需要进行比较便可直接取得所查记录.在此,我们称这个对应关系为哈希(Hash)函数,按这个思想建立的表为哈希表. 在哈希表中对于不同的关键字可能得到同一哈希地址,这种现象称做冲突.在一般情况下,冲突只能尽可能地减少,而不能完全避免.因为哈希函数是从

Trie树/字典树

Trie树结构 Trie树是一种树形数据结构,又称为单词查找树.字典树,是一种用于快速检索的多叉树结构.典型应用是统计和排序大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.     它的主要设计思想是空间换时间,利用字符串的公共前缀来降低查询时间的开销.它的优点是可以最大限度的减少无谓的字符串比较,查询效率比哈希表高:缺点是内存消耗非常大. Trie树基本特性 根节点不包含字符,除根节点外每一个节点都只包含一个字符 从根节点到某一节点,路径上经过的字符连接起来,为该节点

Hihocoder #1014 : Trie树 (字典数树统计前缀的出现次数 *【模板】 基于指针结构体实现 )

#1014 : Trie树 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进. 这一天,他们遇到了一本词典,于是小Hi就向小Ho提出了那个经典的问题:“小Ho,你能不能对于每一个我给出的字符串,都在这个词典里面找到以这个字符串开头的所有单词呢?” 身经百战的小Ho答道:“怎么会不能呢!你每给我一个字符串,我就依次遍历词典里的所有单词,检查你给我的字

Trie树(字典树) 个人模版

Trie树的基本实现 字母树的插入(Insert).删除( Delete)和查找(Find)都非常简单,用一个一重循环即可,即第i 次循环找到前i 个字母所对应的子树,然后进行相应的操作.实现这棵字母树,我们用最常见的数组保存(静态开辟内存)即可,当然也可以开动态的指针类型(动态开辟内存).至于结点对儿子的指向,一般有三种方法: 1.对每个结点开一个字母集大小的数组,对应的下标是儿子所表示的字母,内容则是这个儿子对应在大数组上的位置,即标号: 2.对每个结点挂一个链表,按一定顺序记录每个儿子是谁

Trie树/字典树题目(2017今日头条笔试题:异或)

1 /* 2 本程序说明: 3 4 [编程题] 异或 5 时间限制:1秒 6 空间限制:32768K 7 给定整数m以及n各数字A1,A2,..An,将数列A中所有元素两两异或,共能得到n(n-1)/2个结果,请求出这些结果中大于m的有多少个. 8 输入描述: 9 第一行包含两个整数n,m. 10 11 第二行给出n个整数A1,A2,...,An. 12 13 数据范围 14 15 对于30%的数据,1 <= n, m <= 1000 16 17 对于100%的数据,1 <= n, m,

[转载]Trie树|字典树(字符串排序)

有时,我们会碰到对字符串的排序,若采用一些经典的排序算法,则时间复杂度一般为O(n*lgn),但若采用Trie树,则时间复杂度仅为O(n). Trie树又名字典树,从字面意思即可理解,这种树的结构像英文字典一样,相邻的单词一般前缀相同,之所以时间复杂度低,是因为其采用了以空间换取时间的策略. 下图为一个针对字符串排序的Trie树(我们假设在这里字符串都是小写字母),每个结点有26个分支,每个分支代表一个字母,结点存放的是从root节点到达此结点的路经上的字符组成的字符串. 将每个字符串插入到tr

Trie树(字典树)模板

1 // 2 // trie树模板.cpp 3 // 7.24集训 4 // 5 // Created by skygao on 2019/7/24. 6 // Copyright © 2019 skygao. All rights reserved. 7 // 8 9 #include <stdio.h> 10 #include <cstdlib> 11 #include <string> 12 #include <cstring> 13 #include