洛谷 P2774 方格取数问题

题目背景

none!

题目描述

在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数。现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大。试设计一个满足要求的取数算法。对于给定的方格棋盘,按照取数要求编程找出总和最大的数。

输入输出格式

输入格式:

第 1 行有 2 个正整数 m 和 n,分别表示棋盘的行数和列数。接下来的 m 行,每行有 n 个正整数,表示棋盘方格中的数。

输出格式:

程序运行结束时,将取数的最大总和输出

输入输出样例

输入样例#1:

3 3
1 2 3
3 2 3
2 3 1 

输出样例#1:

11

说明

none!

解题思路

  一道和骑士共存问题差不多的题目,二分图黑白染色后跑最大独立集,这里每个白格向四周连边,而不是马能攻击到的地方(废话)。

源代码

#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>

int n,m;
int a[1000][1000]={0};
int S=0;
inline int id(int x,int y)
{
    return (x-1)*m+y;
}

int s,t;
struct Edge{
    int next,to,flow;
}e[1000010];
int cnt=2,head[1000]={0};
void add(int u,int v,int f)
{
    e[cnt]={head[u],v,f};
    head[u]=cnt++;
    e[cnt]={head[v],u,0};
    head[v]=cnt++;
}

int dis[1000]={0};
bool bfs()
{
    memset(dis,0,sizeof(dis));
    std::queue<int> q;
    q.push(s);
    dis[s]=1;
    while(!q.empty())
    {
        int u=q.front();q.pop();
        for(int i=head[u];i;i=e[i].next)
        {
            int v=e[i].to;
            if(dis[v]||!e[i].flow) continue;
            dis[v]=dis[u]+1;
            q.push(v);
        }
    }
    return dis[t]!=0;
}

int dfs(int u,int f)
{
    if(u==t||f==0) return f;
    int flow_sum=0;
    for(int i=head[u];i;i=e[i].next)
    {
        int v=e[i].to;
        if(dis[v]!=dis[u]+1||!e[i].flow) continue;
        int temp=dfs(v,std::min(e[i].flow,f-flow_sum));
        e[i].flow-=temp;
        e[i^1].flow+=temp;
        flow_sum+=temp;
        if(flow_sum>=f) break;
    }
    if(!flow_sum) dis[u]=-1;
    return flow_sum;
}

int dinic()
{
    int ans=0;
    while(bfs())
    {
        while(int temp=dfs(s,0x7fffffff))
            ans+=temp;
    }
    return ans;
}

int main()
{
    scanf("%d%d",&n,&m);
    s=n*m+1,t=s+1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            scanf("%d",&a[i][j]),S+=a[i][j];
    int bh[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            if((i+j)&1)
            {
                add(s,id(i,j),a[i][j]);
                for(int k=0;k<4;k++)
                {
                    int x=i+bh[k][0],y=j+bh[k][1];
                    if(x>=1&&x<=n&&y>=1&&y<=m)
                        add(id(i,j),id(x,y),0x7fffffff);
                }
            }
            else
                add(id(i,j),t,a[i][j]);
        }
    }
    printf("%d\n",S-dinic());
    return 0;
}
时间: 2024-12-26 01:14:50

洛谷 P2774 方格取数问题的相关文章

[洛谷P2774] 方格取数问题

题意 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. 想法 我们将问题转化为:一开始所有格子都选,之后去掉价值和最少的一些格子使剩下的格子合法. 将方格黑白染色,白格子连向S,黑格子连向T,边权为这个格子的值(也就是说将格子转移到边上). 相邻的黑白格子间连INF的边.(这样每条从S到T的路径都为 S->白格子->黑格子->T , 这两个格子不能同时选,S->白格子 与 黑格子->T 间必

洛谷1004方格取数

P1004 方格取数 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 14 0 0 0 0 0 21 0 0 0 4 0 0 0 0 15 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . B 某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角

【动态规划】洛谷P1004方格取数

题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 14 0 0 0 0 0 21 0 0 0 4 0 0 0 0 15 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . B 某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角的B 点.在走过的路上

洛谷[P1004]方格取数

题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 14 0 0 0 0 0 21 0 0 0 4 0 0 0 0 15 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . B 某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角的B 点.在走过的路上

洛谷P1004 方格取数

题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 14 0 0 0 0 0 21 0 0 0 4 0 0 0 0 15 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . B 某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角的B 点.在走过的路上

洛谷 P1004 方格取数 【多线程DP/四维DP/】

题目描述(https://www.luogu.org/problemnew/show/1004) 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 14 0 0 0 0 0 21 0 0 0 4 0 0 0 0 15 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . B 某人

[洛谷P2045]方格取数加强版

题目大意:有一个n*n的矩阵,每个格子有一个非负整数,规定一个人从(1,1)开始,只能往右或下走,走到(n,n)为止,并把沿途的数取走,取走后数变为0.这个人共取n次,求取得的数的最大总和. 解题思路:由于取多少次不确定,所以不能用dp. 我们发现,一个格子只能从左边或上面走来,且数只能取到一次,那么我们可以把此题转化为最大费用最大流问题.首先拆点,将一个点拆成x和y,然后从x到y连一条容量为1,流量为x(x为这格的数)的边,然后再连一条容量为inf,费用为0的边,这样即可保证一个点可以走多次,

【DP】洛谷1004方格取数

题目在这里 首先想到的是DFS,附上80分代码(不知道为什么WA了一个点): #include <cstdio> #include <cstring> #define N 1001 int max(int a,int b){return a > b ? a : b;} int n,ans[N][N],f[N][N],sum = 0; bool u[N][N]; void Del(int x,int y){ ans[x][y] = 0; if(x == 1 &&

P2774 方格取数问题 网络最大流 割

P2774 方格取数问题:https://www.luogu.org/problemnew/show/P2774 题意: 给定一个矩阵,取出不相邻的数字,使得数字的和最大. 思路: 可以把方格分成两个部分,横坐标和纵坐标和为奇数的一组,和为偶数的一组,超级源点向偶数一组连容量为格点数字大小的边,奇数一组向超级汇点连容量为格点大小的边.然后两组间相临的点连容量为无穷的边. 跑出这个图的最大流,相当于是最小割,就是去掉了最少的部分使得网络不流通.因此答案就是sum - dinic(): #inclu