题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5303
Problem Description
There are n apple
trees planted along a cyclic road, which is L metres
long. Your storehouse is built at position 0 on
that cyclic road.
The ith
tree is planted at position xi,
clockwise from position 0.
There are ai delicious
apple(s) on the ith
tree.
You only have a basket which can contain at most K apple(s).
You are to start from your storehouse, pick all the apples and carry them back to your storehouse using your basket. What is your minimum distance travelled?
1≤n,k≤105,ai≥1,a1+a2+...+an≤105
1≤L≤109
0≤x[i]≤L
There are less than 20 huge testcases, and less than 500 small testcases.
Input
First line: t,
the number of testcases.
Then t testcases
follow. In each testcase:
First line contains three integers, L,n,K.
Next n lines,
each line contains xi,ai.
Output
Output total distance in a line for each testcase.
Sample Input
2 10 3 2 2 2 8 2 5 1 10 4 1 2 2 8 2 5 1 0 10000
Sample Output
18 26
Source
2015 Multi-University Training Contest 2
题意:
一个长为 L 的环行路线,有 n 颗苹果树,每颗苹果树上有 a[i] 个苹果,一个人在0点(仓库的位置),他有一个篮子,篮子每次最多只能装 k 个苹果,求要装完所有的苹果并且回到仓库的最小路程;给出的苹果树坐标是按顺时针的!
官方题解:
PS:
贪心,把环从中间分为两段,分左右两条线;
利用 a[i] 数组记录每个苹果所在的苹果树的位置,之后再将苹果按照所在的位置进行排序一下,
所以我们就知道了每次摘 k 个苹果的路程是最远的那个苹果所在的位置。
再用 sum[i] 表示摘第 i 个苹果时的最小代价和,
根据背包的思想得到:
if ( i <= k )
sum[i] = d[i]
else
sum[i] = d[i] + sum[i-k]
注意:
还有一种情况是在最后当剩下的苹果少于等于 k 个时,或许一次性绕环一圈拿完最后的k个所需的路程更少;
枚举剩下的最后k个!
代码如下:
#include <cstdio> #include <cstring> #include <vector> #include <algorithm> using namespace std; #define LL __int64 const int maxn = 100047; vector <int> v1, v2; LL a[maxn]; LL sum1[maxn], sum2[maxn]; int main() { int t; int n, k, l; scanf("%d",&t); while(t--) { scanf("%d%d%d",&l,&n,&k); int pos, num; int h = 0; for(int i = 0; i < n; i++) { scanf("%d%d",&pos,&num); for(int j = 0; j < num; j++) { a[++h] = pos; } } k = min(h,k); v1.clear(); v2.clear(); for(int i = 1; i <= h; i++) { if(a[i]*2 < l) { v1.push_back(a[i]); } else { v2.push_back(l - a[i]); } } memset(sum1,0,sizeof(sum1)); memset(sum2,0,sizeof(sum2)); sort(v1.begin(), v1.end()); sort(v2.begin(), v2.end()); int len1 = v1.size(), len2 = v2.size(); for(int i = 0; i < len1; i++) { int id = i+1; if(id <= k) { sum1[id] = v1[i]; } else { sum1[id] = v1[i]+sum1[id-k]; } } for(int i = 0; i < len2; i++) { int id = i+1; if(id <= k) { sum2[id] = v2[i]; } else { sum2[id] = v2[i]+sum2[id-k]; } } LL ans = 2*(sum1[len1]+sum2[len2]);//来回 int t1, t2; for(int i = 0; i <= k && i <= len1; i++) { t1 = len1 - i; t2 = len2-(k-i); if(t2 < 0) { t2 = 0; } ans = min(ans,2*(sum1[t1]+sum2[t2])+l);//最后不足k个绕行一圈全部摘走 } printf("%I64d\n",ans); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。