【总目录】http://www.cnblogs.com/tbcaaa8/p/4415055.html
1. 用牛顿法解方程
牛顿法是一种求解方程的迭代算法,也可以用于方程组的求解。其思想是利用方程(尤其是非线性方程)的线性部分,对原方程进行近似。不失一般性,考虑方程f(x)=0。对f(x)在x=t处进行泰勒展开,可得f(x)=f(t)+f‘(t)(x-t)+...
取线性部分代替f(x),带入方程f(x)=0,可得f(t)+f‘(t)(x-t)=0 ,进而解出x=t-f(t)/f‘(t)。将方程的解写为迭代形式,可以得到牛顿法的迭代公式:
[例]使用牛顿法解方程x3+x=2
第一步:求f(x)及f‘(x),即f(x)=x3+x-2, f‘(x)=3x2+1
第二步:选择迭代初始值。初始值一般应选在解的附近,以防算法不收敛。这里选择x(0)=2
第三步:根据迭代公式和初始值迭代求解。迭代过程如下:
k | x(k) | f(x(k)) |
0 | 2.00 | 8.00 |
1 | 1.38 | 2.04 |
2 | 1.08 | 0.35 |
3 | 1.00 | 0.02 |
4 | 1.00 | 0.00 |
结论:经过4次迭代后,函数取值变为0,即原方程的根已找到。
牛顿法的收敛条件及收敛速度略去。在机器学习的应用中,可以采用尝试不同初始值的方法减少不收敛现象的发生;若牛顿法收敛,一般可以达到二次收敛的收敛速度,与梯度下降法相比,迭代次数明显减少。
2. 用牛顿法解方程组
在本系列上一篇文章中,我们使用梯度下降法求解损失函数J的极小值;而从上面的描述来看,牛顿迭代只是用来求解方程的根,这与多元函数的极小值又有什么联系呢?其实,要求多元函数的极小值,只需令多元函数对每一个自变量的偏导数为0,并解出此时每一个自变量的取值即可。于是,多元函数极小值问题,被转化为多元非线性方程组求解问题。
首先考虑多元函数的泰勒展开。不失一般性,以f1(x1,x2,...,xn)为例,在点(t1,t2,...,tn)的泰勒展开式如下:
取线性部分代替f1(x),并令其为0,有:
将其整理为向量形式,并分离出自变量,可以得到:( 为了简便,以下使用f1代替f1(t1,t2,...,tn) )
假定方程组由一系列方程{f1=0, f2=0, ..., fn=0}组成,可以将上式整理为矩阵形式:
上式中的n*n矩阵为雅可比矩阵(Jacobian Matrix),简记为J(F)。同时,将自变量(x1,...,xn)记为X,将(t1,...,tn)记为T,将(f1,...,fn)记为F,则有:
化简后可得:
将方程组的解写为迭代形式,即可得到适用于方程组求解的牛顿法迭代公式:
至此可以发现,虽然牛顿法的迭代次数比梯度下降法小得多,但是在每一次迭代过程中,都需要重新计算J(F)的逆矩阵。若n为特征维数,则通常逆矩阵的计算需要Θ(n3)的时间复杂度。使用Strassen方法可以使逆矩阵计算的时间复杂度降至Θ(nlog27),也可以使用数值方法近似求解逆矩阵,但当特征维数较大时,这两种方法仍然很慢。因此,仅在特征维数较小时,牛顿法才能够快速收敛。特殊地,当取n=1时,上式可退化为本文第1节推导出的,用于求解单个方程的牛顿迭代公式。
3. 使用牛顿法求函数的极值
若用▽f(X)表示函数f(X)的梯度向量,带入普通牛顿法迭代公式中,即可得到用于求函数极值的迭代公式:
考虑到:
迭代公式可以在形式上进一步化简:
其中,H(f)表示函数f(x1,...,xn)的海森矩阵(Hessian Matrix)。
就具体问题而言,本系列上一篇文章需要求损失函数的极小值。除了之前介绍的梯度下降法之外,还可以使用本文章介绍的牛顿法。对应的迭代公式为: