EC笔记:第二部分:12、复制对象时勿忘其每一个成分

EC笔记:第二部分:12、复制对象时勿忘其每一个成分

1.场景

某些时候,我们不想使用编译器提供的默认拷贝函数(包括拷贝构造函数和赋值运算符),考虑以下类定义:

代码1:

class Point{

private:

double x;

double y;

public:

        Point()=default;

Point(const Point &other){

x=other.x;

y=other.y;

}

const Point&
operator=(const Point &other){

x=other.x;

y=other.y;

            return
*this;

}

};

Point类重写了拷贝构造函数和赋值运算符,这并没有什么问题,但是,假设现在要新增一个成员:

代码2:

class Point{

private:

double x;

double y;

double r;
//新增的成员

public:

        Point()=default;

Point(const Point &other){

x=other.x;

y=other.y;

}

const Point&
operator=(const Point &other){

x=other.x;

y=other.y;

            return
*this;

}

};

而且我们的程序员很不巧地忘了更新拷贝构造函数和赋值运算符,那么在复制的时候,新增的1成员r就保持原值,新得到的对象与原对象不相等,与要赋值的对象也不相等。

考虑另外一种场景:

代码3:

class Point{

private:

double x;

double y;

};

class MyPoint:public Point{

private:

double r;

public:

        Point()=default;

MyPoint(const MyPoint& other){

r=other.r;

}

const MyPoint&
operator=(const MyPoint& other){

r=other.r;

            return
*this;

}

};

当MyPoint继承Point类的时候,重写了拷贝构造函数和赋值运算符,但是忘了赋值基类中的成员,也会导致和前面一样的后果。

2.解决办法

为了解决上面的问题,首先,确保拷贝构造函数和赋值运算符确实将所有的成员都进行了拷贝(除非你是真的想保留一些成员)。例如,代码2中增加了成员r,那么拷贝构造函数和赋值运算符就应该对应更新:

代码4:

class Point{

private:

double x;

double y;

double r;
//新增的成员

public:

        Point()=default;

Point(const Point &other){

x=other.x;

y=other.y;

r=other.r;//新增

}

const Point&
operator=(const Point &other){

x=other.x;

y=other.y;

r=other.r;//新增

            return
*this;

}

};

其次,子类中重写了赋值运算符或者拷贝构造函数,一定要将父类中隐藏的成员一起复制,通常是调用父类的赋值运算符或者拷贝构造函数。代码3中可以修改为以下代码:

代码5:

class Point{

public:

Point()=default;

private:

double x;

double y;

};

class MyPoint:public Point{

private:

double r;

public:

MyPoint()=default;

MyPoint(const MyPoint& other):Point(other){

r=other.r;

}

const MyPoint&
operator=(const MyPoint& other){

Point::operator=(other);

r=other.r;

return
*this;

}

};

有些童鞋可能注意到,大多数拷贝构造函数与赋值运算符的操作类似,那么,是否可以在拷贝构造函数中调用赋值运算符呢?类似下面的代码:

代码6:

class Point{

public:

Point()=default;

private:

double x;

double y;

};

class MyPoint:public Point{

private:

double r;

public:

MyPoint()=default;

MyPoint(const MyPoint& other){

operator=(other);

}

const MyPoint&
operator=(const MyPoint& other){

Point::operator=(other);

r=other.r;

return
*this;

}

};

对此,《Effective C++》一书给出的解释是:

这段解释比较不是那么易懂,总体说来,就是在执行operator=的时候,拷贝构造函数其实已经执行结束,赋值运算符只作用于已经构造好的对象上,所以此时再使用并无意义(本质上相当于调用了默认构造函数+赋值运算符)。

反过来的话(在赋值运算符中调用拷贝构造函数),由于根本没有类似的语法,所以不做讨论。事实上,构造函数主要目的是"构造",但是调用赋值运算符的时候,对象肯定已经构造完毕,所以,不会有这样的语法支持。

对于拷贝构造函数与赋值运算符有类似代码的场景,《Effective C++》给出的建议是,将公共代码提到一个单独的函数中,各自调用,以上代码可修改为:

代码7:

class Point{

public:

Point()=default;

private:

double x;

double y;

};

class MyPoint:public Point{

private:

double r;

void
init(const MyPoint& other){

r=other.r;

}

public:

MyPoint()=default;

MyPoint(const MyPoint& other):Point(other){

init(other);

}

const MyPoint&
operator=(const MyPoint& other){

Point::operator=(other);

init(other);

return
*this;

}

};

但是对于以上的修改方法,如果是对于这个类,我仍觉得有瑕疵。虽然拷贝构造函数中直接调用了父类的拷贝构造函数,但是在调用init函数的时候,成员r其实已经被构造,整个对象此时已经构造完毕,再对r进行复制,依然会产生额外的开销(当然,这个开销比拷贝构造函数直接调用赋值运算符小)。

所以我建议的修改方式为直接调用每个成员的拷贝构造函数,代码如下:

代码8:

class Point{

public:

Point()=default;

private:

double x;

double y;

};

class MyPoint:public Point{

private:

double r;

public:

MyPoint()=default;

MyPoint(const MyPoint& other):Point(other),r(other.r){

}

const MyPoint&
operator=(const MyPoint& other){

Point::operator=(other);

r=other.r;

return
*this;

}

};

此时Point和r都调用了各自的拷贝构造函数完成构造,比代码7的效率要好一些。

当然,这个修改只是针对这个类,《Effective C++》中指的是拷贝构造函数与赋值运算符中有相同代码部分,此处的修改已经不属于"相同代码"了,因为r=other.r已经被优化为了r(other.r),相当于拷贝构造函数与赋值运算符中已经没有相同代码了。

针对代码7和代码8的分析,可以知道,只有当r没有提供拷贝构造函数的时候,代码7才不能优化为代码8,通常有两种情况:

  1. r是一个类对象,而且此对象中有些成员未提供拷贝构造函数
  2. r未提供拷贝构造函数

其实总的就是一句话:r无法通过拷贝构造函数构造,这时才需要用自定义代码完成r的构造。所以为了避免效率上的损失,尽量每个成员都提供拷贝构造函数(除非确实不希望成员被复制,当然,此时对象也不应该有拷贝构造函数)。

3.建议

  1. 确保每个成员都被复制
  2. 将不同copy函数中相同部分提取出来,重新封装一个函数,各自调用,两个copy函数不应该存在调用关系。
时间: 2024-10-23 11:51:53

EC笔记:第二部分:12、复制对象时勿忘其每一个成分的相关文章

Effective C++_笔记_条款12_复制对象时勿忘其每一个成分

(整理自Effctive C++,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 编译器会在必要时候为我们的classes创建copying函数,这些“编译器生成版”的行为:将被烤对象的所有成员变量都做一份拷贝. 如果你声明自己的copying函数,意思就是告诉编译器你并不喜欢缺省实现中的某些行为.编译器仿佛被冒犯似的,会以一种奇怪的方式回敬:当你的实现代码几乎必然出错时却不告诉你.所以自己实现copying函数时,请遵循一条规则:如果你为c

Effective C++ -----条款12: 复制对象时勿忘其每一个成分

Copying函数应该确保复制“对象内的所有成员变量”及“所有base class成分”. 不要尝试以某个copying函数实现另一个copying函数.应该将共同机能放进第三个函数中,并由两个coping函数共同调用.如果你发现你的copy构造函数和copy assignment操作符有相近的代码,消除重复代码的做法是,建立一个新的成员函数给两者调用.这样的函数往往是private而且常被命名为init.这个策略可以安全消除copy构造函数和copy assignment操作符之间的代码重复.

Effective C++读书笔记之十二:复制对象时勿忘其每一个成分

Item 12:Copy all parts of an object 如果你声明自己的copying函数,意思就是告诉编译器你并不喜欢缺省显示中的某些行为.而编译器会对"你自己写出copying函数"做出一种复仇的行为:既然你拒绝它们为你写出copying函数,如果你的代码不完全,它们也不会告诉你.结论很明显:如果你为class添加一个成员变量,你必须同时修改copying函数.如果你忘记,编译器不太可能提醒你. 一下提供一种正确的模版: class Date{...}; class

Effective C++:条款12:复制对象时勿忘其每一个成分

(一) 一个继承体系的声明: class Date {...}; class Customer { public: ... private: string name; Date lastTransaction; }; class PriorityCustomer : public Customer { public: PriorityCustomer(const PriorityCustomer& rhs); PriorityCustomer& operator=(const Priori

条款12:复制对象时勿忘其每一个成分

对象复制操作operator=或copy构造函数,一定要记得复制对象每一个成份,特别是base class的成分: 注意:

effective c++ 条款12:复制对象时勿忘其每一个成分

记住:拷贝函数应该确保复制"对象内的所有成员变量"及"所有父类成分".不要尝试以某个拷贝函数实现另一个拷贝函数.应该将共同机能放进第三个函数中,并由两个拷贝函数共同调用. 下面是一个类实现了自己的拷贝函数,一起正常. void logCall(const string& funcName): class Customer { public: ... Customer(const Customer& rhs); Customer& operat

[012]复制对象时勿忘其每一个成分

引言: 在深拷贝和浅拷贝的理解中,我们知道了“拷贝构造函数”一词,并且也了解了它的构成. A(const A& r); // 形式有多种,在这里只列出一个 因此,在值传递的应用场景里,我们可以写出以下的拷贝构造函数: 1 #include <iostream> 2 #include<string> 3 using namespace std; 4 5 class A { 6 public: 7 A(int i) : count(i) {}; 8 A(const A&

Effective C++ Item 12-复制对象时忽忘其每一个成分

Item 12-复制对象时忽忘其每一个成分(Copy all parts of an object) 设计良好之面向对象系统(OO-system)会将对象的内部封装起来,只留两个函数负责将对象拷贝(复制),那便是带着适切名称的copy构造函数和copy assignment操作符,称它们为copying函数. 如果是"编译器生成版本"的行为:将被拷对象的所有成员变量都做一份拷贝. 如果是自己声明就要注意了. 如果是为"derived class撰写copying函数"

C++复制对象时勿忘每一部分

确保两点: 1 复制所有的成员变量 2 调用所有基类的copy函数 class Customer { public: explicit Customer(const tstring _name,const tstring _lastTransaction) :m_sName(_name), m_sLastTransaction(_lastTransaction) { OutputDebugString(_T("Customer construct \n")); } virtual ~C