前言
1. 创建表:(由master完成)
- 首先需要获取master地址(master启动时会将地址告诉zookeeper)因而客户端首先会访问zookeeper获取master的地址
- client和master通信,然后有master来创建表(包括表的列簇,是否cache,设置存储的最大版本数,是否压缩等)。
2. 读写删除数据
- client与regionserver通信,读写、删除数据
- 写入和删除数据时讲数据打上不同的标志append,真正的数据删除操作在compact时发生
3. 版本信息
configuration
HbaseConfiguration, 表示HBase的配置信息
两种构造函数如下:
public HBaseConfiguration()
-----------默认的构造方式会从hbase-default.xml和hbase-site.xml中读取配置,如果classpath中没有这两个文件,需要自己配置public HBaseConfiguration(final Configuration c)
eg:
static HBaseConfiguration cfg = null;
static {
Configuration HBASE_CONFIG = new Configuration();
HBASE_CONFIG.set("hbase.zookeeper.quorum", "192.168.1.95");
HBASE_CONFIG.set("hbase.zookeeper.property.clientPort", "2181");
cfg = new HBaseConfiguration(HBASE_CONFIG);
}
创建表
使用HBaseAdmin对象的createTable方法
eg:
public static void createTable(String tableName) {
System.out.println("************start create table**********");
try {
HBaseAdmin hBaseAdmin = new HBaseAdmin(cfg);
if (hBaseAdmin.tableExists(tableName)) {// 如果存在要创建的表,那么先删除,再创建
hBaseAdmin.disableTable(tableName);
hBaseAdmin.deleteTable(tableName);
System.out.println(tableName + " is exist");
}
HTableDescriptor tableDescriptor = new HTableDescriptor(tableName);// 代表表的schema
tableDescriptor.addFamily(new HColumnDescriptor("name")); //增加列簇
tableDescriptor.addFamily(new HColumnDescriptor("age"));
tableDescriptor.addFamily(new HColumnDescriptor("gender"));
hBaseAdmin.createTable(tableDescriptor);
} catch (MasterNotRunningException e) {
e.printStackTrace();
} catch (ZooKeeperConnectionException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
System.out.println("*****end create table*************");
}
public static void main(String[] agrs) {
try {
String tablename = "wishTest";
HBaseTest.createTable(tablename);
} catch (Exception e) {
e.printStackTrace();
}
}
日志信息如下:
************start create
table**********
14/05/18
14:14:22 INFO zookeeper.ZooKeeper: Client
environment:zookeeper.version=3.4.5-1392090, built on 09/30/2012 17:52
GMT
14/05/18 14:14:22 INFO
zookeeper.ZooKeeper: Client environment:host.name=LJ-PC
14/05/18
14:14:22 INFO zookeeper.ZooKeeper: Client
environment:java.version=1.6.0_11
14/05/18
14:14:22 INFO zookeeper.ZooKeeper: Client environment:java.vendor=Sun
Microsystems Inc.
14/05/18
14:14:22 INFO zookeeper.ZooKeeper: Client
environment:java.home=D:\java\jdk1.6.0_11\jre
14/05/18
14:14:22 INFO zookeeper.ZooKeeper: Client
environment:java.class.path=....
...
14/05/18
14:14:22 INFO zookeeper.RecoverableZooKeeper: The identifier of this process
is [email protected]
14/05/18
14:14:22 INFO zookeeper.ClientCnxn: Socket connection established to
hadoop/192.168.1.95:2181, initiating session
14/05/18
14:14:22 INFO zookeeper.ClientCnxn: Session establishment complete on server
hadoop/192.168.1.95:2181, sessionid = 0x460dd23bda0007, negotiated timeout =
180000
14/05/18 14:14:22
INFO zookeeper.ZooKeeper: Session: 0x460dd23bda0007 closed
14/05/18 14:14:22 INFO zookeeper.ClientCnxn:
EventThread shut down
*****end create
table*************
在centos中查看是否创建成功:
网页上查看:
HTableDescriptor其他方法如下:
- setMaxFileSize,指定最大的region size
- setMemStoreFlushSize 指定memstore flush到HDFS上的文件大小,默认是64M
- public void addFamily(final
HColumnDescriptor family)
HColumnDescriptor 其他方法如下:
- setTimeToLive:指定最大的TTL,单位是ms,过期数据会被自动删除。
- setInMemory:指定是否放在内存中,对小表有用,可用于提高效率。默认关闭
- setBloomFilter:指定是否使用BloomFilter,可提高随机查询效率。默认关闭
- setCompressionType:设定数据压缩类型。默认无压缩。
- setScope(scope):集群的Replication,默认为flase
- setBlocksize(blocksize);
block的大小默认是64kb,block小适合随机读,但是可能导Index过大而使内存oom,
block大利于顺序读。
- setMaxVersions:指定数据最大保存的版本个数。默认为3。版本数最多为Integer.MAX_VALUE, 但是版本数过多可能导致compact时out of
memory。
- setBlockCacheEnabled:是否可以cache, 默认设置为true,将最近读取的数据所在的Block放入内存中,标记为single,若下次读命中则将其标记为multi
插入数据
使用HTable获取table 注意:HTable不是线程安全的,因此当多线程插入数据的时候推荐使用HTablePool
使用put插入数据,可以单条插入数据和批量插入数据,put方法如下:
public void put(final Put put) throws IOException
public void put(final List<Put> puts) throws IOException
put 常用方法:
- add:增加一个Cell
- setTimeStamp:指定所有cell默认的timestamp,如果一个Cell没有指定timestamp,就会用到这个值。如果没有调用,HBase会将当前时间作为未指定timestamp的cell的timestamp.
- setWriteToWAL:
WAL是Write Ahead
Log的缩写,指的是HBase在插入操作前是否写Log。默认是打开,关掉会提高性能,但是如果系统出现故障(负责插入的Region
Server挂掉),数据可能会丢失。
下面两个方法会影响插入性能
- setAutoFlash:
AutoFlush指的是在每次调用HBase的Put操作,是否提交到HBase
Server。默认是true,每次会提交。如果此时是单条插入,就会有更多的IO,从而降低性能。进行大量Put时,HTable的setAutoFlush最好设置为flase。否则每执行一个Put就需要和RegionServer发送一个请求。如果autoFlush = false,会等到写缓冲填满才会发起请求。显式的发起请求,可以调用flushCommits。HTable的close操作也会发起flushCommits
- setWriteBufferSize:
Write Buffer
Size在AutoFlush为false的时候起作用,默认是2MB,也就是当插入数据超过2MB,就会自动提交到Server
eg:
public static void insert(String tableName) {
System.out.println("************start insert ************");
HTablePool pool = new HTablePool(cfg, 1000);
Put put = new Put("1".getBytes());// 一个PUT代表一行数据,每行一个唯一的ROWKEY,此处rowkey为1
put.add("name".getBytes(), null, "wish".getBytes());// 本行数据的第一列
put.add("age".getBytes(), null, "20".getBytes());// 本行数据的第三列
put.add("gender".getBytes(), null, "female".getBytes());// 本行数据的第三列
try {
pool.getTable(tableName).put(put);
} catch (IOException e) {
e.printStackTrace();
}
System.out.println("************end insert************");
}
public static void main(String[] agrs) {
try {
String tablename = "wishTest";
HBaseTest.insert(tablename);
} catch (Exception e) {
e.printStackTrace();
}
}
日志信息如下:
************start insert
************
14/05/18
15:01:17 WARN hbase.HBaseConfiguration: instantiating HBaseConfiguration() is
deprecated. Please use HBaseConfiguration#create() to construct a plain
Configuration
14/05/18
15:01:17 INFO zookeeper.ZooKeeper: Client
environment:zookeeper.version=3.4.5-1392090, built on 09/30/2012 17:52
GMT
14/05/18 15:01:17 INFO
zookeeper.ZooKeeper: Client environment:host.name=LJ-PC
14/05/18
15:01:17 INFO zookeeper.ZooKeeper: Client
environment:java.version=1.6.0_11
14/05/18
15:01:17 INFO zookeeper.ZooKeeper: Client environment:java.vendor=Sun
Microsystems Inc.
14/05/18
15:01:17 INFO zookeeper.ZooKeeper: Client
environment:java.home=D:\java\jdk1.6.0_11\jre
.....
14/05/18 15:01:17 INFO zookeeper.ZooKeeper:
Client environment:java.compiler=<NA>
14/05/18
15:01:17 INFO zookeeper.ZooKeeper: Client environment:os.name=Windows
Vista
14/05/18 15:01:17 INFO
zookeeper.ZooKeeper: Client environment:os.arch=x86
14/05/18
15:01:17 INFO zookeeper.ZooKeeper: Client
environment:os.version=6.1
14/05/18 15:01:17 INFO zookeeper.ZooKeeper:
Client environment:user.name=root
14/05/18
15:01:17 INFO zookeeper.ZooKeeper: Client
environment:user.home=C:\Users\LJ
14/05/18
15:01:17 INFO zookeeper.ZooKeeper: Client
environment:user.dir=D:\java\eclipse4.3-jee-kepler-SR1-win32\workspace\hadoop
14/05/18 15:01:17 INFO zookeeper.ZooKeeper:
Initiating client connection, connectString=192.168.1.95:2181
sessionTimeout=180000 watcher=hconnection
14/05/18
15:01:17 INFO zookeeper.RecoverableZooKeeper: The identifier of this process
is [email protected]
14/05/18
15:01:17 INFO zookeeper.ClientCnxn: Opening socket connection to server
hadoop/192.168.1.95:2181. Will not attempt to authenticate using SASL
(无法定位登录配置)
14/05/18 15:01:17
INFO zookeeper.ClientCnxn: Socket connection established to
hadoop/192.168.1.95:2181, initiating session
14/05/18
15:01:17 INFO zookeeper.ClientCnxn: Session establishment complete on server
hadoop/192.168.1.95:2181, sessionid = 0x460dd23bda000b, negotiated timeout =
180000
************end
insert************
查看插入结果:
查询数据
分为单条查询和批量查询,单条查询通过get查询。 通过HTable的getScanner实现批量查询
public Result get(final Get get) //单条查询
public ResultScanner getScanner(final Scan scan)
//批量查询
eg:单条查询:
public static void querySingle(String tableName) {HTablePool pool = new HTablePool(cfg, 1000);
try {
Get get = new Get("1".getBytes());// 根据rowkey查询
Result r = pool.getTable(tableName).get(get);
System.out.println("rowkey:" + new String(r.getRow()));
for (KeyValue keyValue : r.raw()) {
System.out.println("列:" + new String(keyValue.getFamily())
+ " 值:" + new String(keyValue.getValue()));
}
} catch (IOException e) {
e.printStackTrace();
}
}
public static void main(String[] agrs) {
try {
String tablename = "wishTest";
HBaseTest.querySingle(tablename);
} catch (Exception e) {
e.printStackTrace();
}
}
查询结果:
rowkey:1
列:age 值:20
列:gender 值:female
列:name
值:wish
eg:批量查询:
public static void queryAll(String tableName) {
HTablePool pool = new HTablePool(cfg, 1000);
try {
ResultScanner rs = pool.getTable(tableName).getScanner(new Scan());
for (Result r : rs) {
System.out.println("rowkey:" + new String(r.getRow()));
for (KeyValue keyValue : r.raw()) {
System.out.println("列:" + new String(keyValue.getFamily())
+ " 值:" + new String(keyValue.getValue()));
}
}
} catch (IOException e) {
e.printStackTrace();
}
}
public static void main(String[] agrs) {
try {
String tablename = "wishTest";
HBaseTest.queryAll(tablename);
} catch (Exception e) {
e.printStackTrace();
}
}
结果如下:
rowkey:1
列:age 值:20
列:gender 值:female
列:name
值:wish
rowkey:112233bbbcccc
列:age 值:20
列:gender
值:female
列:name 值:wish
rowkey:2
列:age 值:20
列:gender
值:female
列:name 值:rain
删除数据
使用HTable的delete删除数据:
public void delete(final Delete delete)
eg:
public static void deleteRow(String tablename, String rowkey) {
try {
HTable table = new HTable(cfg, tablename);
List list = new ArrayList();
Delete d1 = new Delete(rowkey.getBytes());
list.add(d1);
table.delete(list);
System.out.println("删除行成功!");} catch (IOException e) {
e.printStackTrace();
}}
public static void main(String[] agrs) {
try {
String tablename = "wishTest";
System.out.println("****************************删除前数据**********************");
HBaseTest.queryAll(tablename);
HBaseTest.deleteRow(tablename,"112233bbbcccc");
System.out.println("****************************删除后数据**********************");
HBaseTest.queryAll(tablename);
} catch (Exception e) {
e.printStackTrace();
}
}
结果如下:
****************************删除前数据**********************
rowkey:1
列:age 值:20
列:gender 值:female
列:name
值:wish
rowkey:112233bbbcccc
列:age 值:20
列:gender
值:female
列:name 值:wish
rowkey:2
列:age 值:20
列:gender
值:female
列:name
值:rain
删除行成功!
****************************删除后数据**********************
rowkey:1
列:age
值:20
列:gender 值:female
列:name 值:wish
rowkey:2
列:age
值:20
列:gender 值:female
列:name 值:rain
删除表
和hbase
shell中类似,删除表前需要先disable表;分别使用disableTable和deleteTable来删除和禁用表
同创建表一样需要使用HbaseAdmin
eg:
public static void dropTable(String tableName) {
try {
HBaseAdmin admin = new HBaseAdmin(cfg);
admin.disableTable(tableName);
admin.deleteTable(tableName);
System.out.println("table: "+tableName+"删除成功!");
} catch (MasterNotRunningException e) {
e.printStackTrace();
} catch (ZooKeeperConnectionException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}}
public static void main(String[] agrs) {
try {
String tablename = "wishTest";
HBaseTest.dropTable(tablename);} catch (Exception e) {
e.printStackTrace();
}
}
结果:
table: wishTest删除成功!
完整代码
package wish.hbase;import java.io.IOException;
import java.util.ArrayList;
import java.util.List;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.MasterNotRunningException;
import org.apache.hadoop.hbase.ZooKeeperConnectionException;
import org.apache.hadoop.hbase.client.Delete;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.HTablePool;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;//import org.apache.hadoop.hbase.io.BatchUpdate;
@SuppressWarnings("deprecation")
public class HBaseTest {
static HBaseConfiguration cfg = null;
static {
Configuration HBASE_CONFIG = new Configuration();
HBASE_CONFIG.set("hbase.zookeeper.quorum", "192.168.1.95");
HBASE_CONFIG.set("hbase.zookeeper.property.clientPort", "2181");
cfg = new HBaseConfiguration(HBASE_CONFIG);
}/**
* 创建一张表
*/public static void createTable(String tableName) {
System.out.println("************start create table**********");
try {
HBaseAdmin hBaseAdmin = new HBaseAdmin(cfg);
if (hBaseAdmin.tableExists(tableName)) {// 如果存在要创建的表,那么先删除,再创建
hBaseAdmin.disableTable(tableName);
hBaseAdmin.deleteTable(tableName);
System.out.println(tableName + " is exist");
}
HTableDescriptor tableDescriptor = new HTableDescriptor(tableName);// 代表表的schema
tableDescriptor.addFamily(new HColumnDescriptor("name")); //增加列簇
tableDescriptor.addFamily(new HColumnDescriptor("age"));
tableDescriptor.addFamily(new HColumnDescriptor("gender"));
hBaseAdmin.createTable(tableDescriptor);
} catch (MasterNotRunningException e) {
e.printStackTrace();
} catch (ZooKeeperConnectionException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
System.out.println("*****end create table*************");
}/**
* 插入数据
*/public static void insert(String tableName) {
System.out.println("************start insert ************");
HTablePool pool = new HTablePool(cfg, 1000);
//HTable table = (HTable) pool.getTable(tableName);Put put = new Put("2".getBytes());// 一个PUT代表一行数据,再NEW一个PUT表示第二行数据,每行一个唯一的ROWKEY,此处rowkey为put构造方法中传入的值
put.add("name".getBytes(), null, "rain".getBytes());// 本行数据的第一列
put.add("age".getBytes(), null, "20".getBytes());// 本行数据的第三列
put.add("gender".getBytes(), null, "female".getBytes());// 本行数据的第三列
try {
pool.getTable(tableName).put(put);
} catch (IOException e) {
e.printStackTrace();
}
System.out.println("************end insert************");
}/**
* 查询所有数据
*/public static void queryAll(String tableName) {
HTablePool pool = new HTablePool(cfg, 1000);
try {
ResultScanner rs = pool.getTable(tableName).getScanner(new Scan());
for (Result r : rs) {
System.out.println("rowkey:" + new String(r.getRow()));
for (KeyValue keyValue : r.raw()) {
System.out.println("列:" + new String(keyValue.getFamily())
+ " 值:" + new String(keyValue.getValue()));
}
}
} catch (IOException e) {
e.printStackTrace();
}
}/*
* 查询单条数据
*/
public static void querySingle(String tableName) {HTablePool pool = new HTablePool(cfg, 1000);
try {
Get get = new Get("1".getBytes());// 根据rowkey查询
Result r = pool.getTable(tableName).get(get);
System.out.println("rowkey:" + new String(r.getRow()));
for (KeyValue keyValue : r.raw()) {
System.out.println("列:" + new String(keyValue.getFamily())
+ " 值:" + new String(keyValue.getValue()));
}
} catch (IOException e) {
e.printStackTrace();
}
}/*
* 删除数据
*/
public static void deleteRow(String tablename, String rowkey) {
try {
HTable table = new HTable(cfg, tablename);
List list = new ArrayList();
Delete d1 = new Delete(rowkey.getBytes());
list.add(d1);
table.delete(list);
System.out.println("删除行成功!");} catch (IOException e) {
e.printStackTrace();
}}
/*
* 删除表
*/
public static void dropTable(String tableName) {
try {
HBaseAdmin admin = new HBaseAdmin(cfg);
admin.disableTable(tableName);
admin.deleteTable(tableName);
System.out.println("table: "+tableName+"删除成功!");
} catch (MasterNotRunningException e) {
e.printStackTrace();
} catch (ZooKeeperConnectionException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}}
public static void main(String[] agrs) {
try {
String tablename = "wishTest";
HBaseTest.dropTable(tablename);
} catch (Exception e) {
e.printStackTrace();
}
}
}
HBase Java API使用(一),布布扣,bubuko.com