深度学习论文阅读笔记--Deep Learning Face Representation from Predicting 10,000 Classes

来自:CVPR 2014   作者:Yi Sun ,Xiaogang Wang,Xiaoao Tang

题目:Deep Learning Face Representation from Predicting 10,000 Classes

主要内容:通过深度学习来进行图像高级特征表示(DeepID),进而进行人脸的分类。

优点:在人脸验证上面做,可以很好的扩展到其他的应用,并且夸数据库有效性;在数据库中的类别越多时,其泛化能力越强,特征比较少,不像其他特征好几K甚至上M,好的泛化能力+不过拟合于小的子训练集。

主要过程:采用卷积神经网络(CNN)方法,并且采用CNN最后一层的激活值输出作为features,不同的人脸区域放入CNN中提取特征,形成了互补、过完全的特征表示。(form complementary and over-complete representations)。

通过深度卷积网络来学习高级的过完全特征(有监督),CNN的最后一层激活值作为输出,

具体细节:

采用3个尺度,10个人脸region,60个patch,训练60个CNN网络,每个提取两个160维的特征(两个是因为: extracts two 160-dimensional DeepID vectors from a particular patch and its horizontally flipped counterpart.),所以最后一张人脸图像的特征的维度是:160*2*60=19200维。

CNN的结构如下:

说明:共5层网络,越往上的神经元的个数就越少,到最后就剩下160个神经元的输出,上面的Face patches 是进过对齐过后的的人脸块,也就是说已左(右)眼为中心的人脸区域块,嘴角为中心的人脸区域块等等,这样就有多个不同的输入块输入到CNN中,文章采用了把倒数第二层的输出+倒数第一层的输出作为特征(这应该是采用12年的Le Cun 那篇文章的track)。最后再把不同的块所输出的特征连接起来,就形成了一个最终一张人脸的特征。然后再用各种分类器对其特征进行分类。

采用Max-Pooling,softmax;

输入图像:39*31*k 个人矩形脸图像块+31*31*k  (这里k在彩色图像时为3,灰度时k为1)个人脸正方形块(因为后面要考虑到是全局图像还是局部图像,且需要考虑到尺度问题),使用ReLU非线性处理;

注意到【Weights in higher convolutional layers of our ConvNets are locally shared to learn different mid- or high-level features in different regions [18]. r in Equation 1  indicates a local region where weights are shared. In the third convolutional layer, weights are locally shared in every 2 2 regions, while weights in the fourth convolutional layer are totally unshared.】

不同的输入图像:

其中局部图像是关键点(每个图像一个关键点)居中,不同的区域大小和不同的尺度图像输入到CNN中,其CNN的结构可能会不相同,但是最后的特征的都是160维度,最后将所有的特征级联起来。

最后一层的特征是第三层和第四层全相连(比较特殊的地方),因为这样可以加入尺度特征,因为第三层和第四层学习到的特征的尺度是不一样的。

特点:提取的特征很Compact,只有160*k,k不大。自然就具有判别力了。

在训练CNN中,训练数据的类别越多,其性能越好,但是会在训练模型中出现问题,也就是太慢。

CNN的输出是特征,而不是输出类别,

分类

采用Joint Bayesian 来进行人脸的verification;也采用了神经网络来比较,但是联合贝叶斯的效果比较好;

实验

因为在LFW中大部分人的图像个数是有限的,很多人只有一张图片;所以采用了新的数据库来训练模型:CelebFaces :八万多幅,五千多人,每个人差不多16张图片,

===============

方法比较:

当前的人脸识别方法:过完全的低级别特征+浅层模型。

ConvNet 能够有效地提取高级视觉特征。

已有的DL方法:

1. Huang【CVPR2012】的生成模型+非监督;

2. Cai 【2012】的深度非线性度量学习;

3 Sun【CVPR2013】的监督学习+二类分类(人脸校验 verfication),是作者去年写的。而这一篇文章是多类分类问题(identification),而且这篇文章中,有10000类的人脸类别。

================

结果:在有对齐人脸的情况下,能够在LFW数据库上识别率达到97.5%。(其训练数据不是LFW,有其他的训练数据来训练模型)。

不理解的地方:

深度学习论文阅读笔记--Deep Learning Face Representation from Predicting 10,000 Classes,布布扣,bubuko.com

时间: 2024-10-17 04:39:31

深度学习论文阅读笔记--Deep Learning Face Representation from Predicting 10,000 Classes的相关文章

Deep Learning Face Representation from Predicting 10,000 Classes论文笔记

Deep Learning Face Representation from Predicting 10,000 Classes论文笔记(2015.03.24) 一.基本思路 作者利用卷积神经网络(Convolutional Neural Network,CNN)对大量样本进行训练,提取Deep hidden identity feature(DeepID)特征,然后利用这些特征进行人脸验证(Face Verification).在LFW(Labeled Faces in the Wild)库上

深度学习文献阅读笔记(1)

转眼间已经研二了,突然想把以前看过的文献总结总结与大家分享,留作纪念,方便以后参考. 1.深度追踪:通过卷积网络进行差异特征学习的视觉追踪(DeepTrack:Learning Discriminative Feature Representations by Convolutional Neural Networks for visual Tracking)(英文,会议论文,2014年,EI检索) 将卷积神经网络用于目标跟踪的一篇文章,可将CNN不仅仅可以用做模式识别,做目标跟踪也是可以,毕竟

深度学习文献阅读笔记(2)

  12.深度学习的昨天.今天和明天(中文,期刊,2013年,知网) 记录了Hinton提出的两个重要观点:一是多隐层神经网络具有优异的特征学习能力,而是深度网络在训练上的难度可通过"逐层初始化"有效克服.详细描述了及机器学习的两次浪潮:浅层学习和深度学习,并指出深度学习研发面临的重大问题,属于一篇技术总结性文章. 13.基于卷积神经网络的植物叶片分类(中文,期刊,2014年,知网). 主要讲述CNN的发展历史. 14.改进的深度卷积网络及在碎纸片拼接中的应用(中文,期刊,2014年,

深度学习文献阅读笔记(3)

21.深度神经网络在视觉显著性中的应用(Visual Attention with Deep Neural Networks)(英文,会议论文.2015年,IEEE检索) 这篇文章主要讲CNN在显著性检測领域的应用. 22.深度学习研究进展(中文,期刊,2015年.知网) 深度学习方面的一篇综述性文章,对深度学习的由来,人脑视觉机理,CNN结构都有较为具体的描写叙述,并介绍深度学习在今后的主要改进方向. 23.深度学习研究进展(中文,期刊,2014年,知网) 强调一点.就是Hinton等人所做的

论文阅读笔记——End-to-end Learning of Action Detection from Frame Glimpses in Videos

论文题目:End-to-end Learning of Action Detection from Frame Glimpses in Videos 出处:arXiv,目前尚未有正式出版 作者及单位: Serena Yeung1, Olga Russakovsky1,2, Greg Mori3, Li Fei-Fei1 1Stanford University, 2Carnegie Mellon University, 3Simon Fraser University 相关工作:视频中的行为检测

深度学习文献阅读笔记(7)

61.基于PCANet-RF的人脸检测系统(中文,期刊,2016,知网) PCANet人脸检测. 62.使用人脸图像的SVM性别分类(Gender Identification using SVM Based on Human Face Images)(英文,会议,2014,EI检索) 就是单纯的使用LBP+SVM进行性别识别,之处在性别识别中多项式核要优于高斯核. 63.基于深度神经网络和树搜索的围棋博弈(英文,期刊,2016,Nature) 这是2016年击败人类的AlphaGo模型对应的论

用500行Julia代码开始深度学习之旅 Beginning deep learning with 500 lines of Julia

Click here for a newer version (Knet7) of this tutorial. The code used in this version (KUnet) has been deprecated. There are a number of deep learning packages out there. However most sacrifice readability for efficiency. This has two disadvantages:

Coursera 深度学习 吴恩达 deep learning.ai 笔记整理(3-2)——机器学习策略

一.误差分析 定义:有时我们希望算法能够胜任人类能做的任务,但是当算法还没达到人类所预期的性能时,人工检查算法错误会让你知道接下来做什么,这也就是误差分析 检查,发现会把够狗当恒,是否需要做一个项目专门处理狗?收集更多的图,或者 在错误例子中查看多少狗 滤镜花哨的滤镜 干扰分类器 做最有潜力的 弄清楚替身空间 坑你归纳出新的误差类型 简历新的错误分类

Coursera 深度学习 吴恩达 deep learning.ai 笔记整理(4-1)—— 卷积神经网络

1.计算机视觉 神经网络在计算机视觉方面有很广泛的应用, 包括图像分类.物体检测.图像风格转换和融合,但是当图片的尺寸比较大时,参数的数量就会增多,传统的全连接神经网络就会很复杂,一方面无法找到足够的数据训练,另一方面也容易引起过拟合,因此我们引入卷积神经网络 原文地址:https://www.cnblogs.com/dapeng-bupt/p/9059927.html