【BZOJ-2229】最小割 最小割树(最大流+分治)

2229: [Zjoi2011]最小割

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit:
1565  Solved: 560
[Submit][Status][Discuss]

Description

小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话:
“对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。
对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割”
现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作为仍然是小蓝的好友,你又有任务了。

Input

输入文件第一行有且只有一个正整数T,表示测试数据的组数。 对于每组测试数据, 第一行包含两个整数n,m,表示图的点数和边数。
下面m行,每行3个正整数u,v,c(1<=u,v<=n,0<=c<=106),表示有一条权为c的无向边(u,v)
接下来一行,包含一个整数q,表示询问的个数 下面q行,每行一个整数x,其含义同题目描述。

Output

对于每组测试数据,输出应包括q行,第i行表示第i个问题的答案。对于点对(p,q)和(q,p),只统计一次(见样例)。

两组测试数据之间用空行隔开。

Sample Input

1
5
0
1
0

Sample Output

10

【数据范围】
对于100%的数据
T<=10,n<=150,m<=3000,q<=30,x在32位有符号整数类型范围内。
图中两个点之间可能有多条边

HINT

Source

Day1

Solution

最小割树Gomory-Hu tree,共有n-1个最小割,连起来,形成树,具体的见下

Gomory-Hu tree是一颗代表了所有源目节点对间的最小割的树。求解出Gomory-Hu tree就可以了解两两节点对之间的最大流(最大流最小割定理)。举例:

下图左侧为一无向图,右侧为初始Gomory-Hutree(所有点在统一集合中),下面进行Gomory-Hu tree的求解。

步骤一:任意选定一个源节点和一个目的节点。在本例中不失一般性选择节点1为源节点(s),5为目的节点(t)。则可得最大流为6,且最小割相应的将点分为如下图右侧所示的两个集合。

步骤二:任意选定与之前步骤不同的一个源节点和一个目的节点。在本例中不失一般性选择节点3为源节点(s),5为目的节点(t)。由于0124四个节点已经被视作一个集合,则可得最大流为8,且最小割相应的将点分为如下图右侧所示的三个集合。

步骤三:任意选定与之前步骤不同的一个源节点和一个目的节点。在本例中不失一般性选择节点1为源节点(s),2为目的节点(t)。同上可得最大流为6,且最小割相应的将点分为如下图右侧所示的四个集合。

重复以上步骤可以将原无向图划分为一棵Gomory-Hutree,如下图所示。

通过此求解过程可知,代码实现整个步骤是十分复杂的。1990年Dan Gusfield通过"Very Simple Methods for All Pairs Network Flow Analysis"一文提出了一种容易实现的Gomory-Hutree的求解方法,也是本文采用的实现方法。下面通过例子来介绍这种实现方法:

不失一般性,举例原图是拥有6个节点的无向图,节点间的权重皆为1,节点间的最小割如下图所示:

步骤一:创建一棵星型树,节点1为中心节点,其他节点为叶子节点,如下图左侧所示。

步骤二:分别选编号为2至6的节点为源节点(s),重复做步骤三和步骤四。

步骤三:在星型树中令与s节点相邻的节点为目的节点(t),计算s与t之间的最大流,并由此得到最小割。将最大流标注在星型树中s节点与t节点间的链路上。

步骤四:对于每一个编号大于s的节点i,如果在原图中s与i是邻居,且i与s在同一割集中,则去除星型图中i与t的连接,增加i与s的连接,如下图中间所示。

最后可得到如上图右侧所示的Gomory-Hutree。

同样的,按照上述做法,就可以递归分治的去求,最后统计答案即可

具体的实现:

对于每层分治,先任选两个点作为源汇做一遍最小割 
然后找出S集和T集,对所有S集的点和T集的点构成的点对用本次得到的最小割更新一遍 
然后将本次分治的点分成S集和T集,对两个集合分治处理即可

值得注意的地方:

1.由于是无向图,连边的时候可以直接二合一,这样方便分治的时候,还原容量

2.分治的时候,L,R控制好,注意初始化,不要遗漏

3.注意需要进行更新的是最初的$S$集和最初的$T$集,不只是本次分治内部的$S‘$集和$T‘$集

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}
#define maxn 200
#define maxm 100010
int n,m,q,t,ans[maxn][maxn],id[maxn],tmp[maxn];
struct Edgenode{int next,to,cap;}edge[maxm];
int head[maxn],cnt=1;
void add(int u,int v,int w)
{cnt++; edge[cnt].to=v; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].cap=w;}
void insert(int u,int v,int w) {add(u,v,w); add(v,u,w);}
int dis[maxn],que[maxn<<1],cur[maxn],S,T;
bool bfs()
{
    memset(dis,-1,sizeof(dis));
    que[0]=S; dis[S]=0; int he=0,ta=1;
    while (he<ta)
        {
            int now=que[he++];
            for (int i=head[now]; i; i=edge[i].next)
                if (edge[i].cap && dis[edge[i].to]==-1)
                    dis[edge[i].to]=dis[now]+1,que[ta++]=edge[i].to;
        }
    return dis[T]!=-1;
}
int dfs(int loc,int low)
{
    if (loc==T) return low;
    int w,used=0;
    for (int i=cur[loc]; i; i=edge[i].next)
        if (edge[i].cap && dis[edge[i].to]==dis[loc]+1)
            {
                w=dfs(edge[i].to,min(low-used,edge[i].cap));
                edge[i].cap-=w; edge[i^1].cap+=w;
                used+=w; if (edge[i].cap) cur[loc]=i;
                if (used==low) return low;
            }
    if (!used) dis[loc]=-1;
    return used;
}
#define inf 0x7fffffff
int dinic()
{
    int tmp=0;
    while (bfs())
        {
            for (int i=1; i<=n; i++) cur[i]=head[i];
            tmp+=dfs(S,inf);
        }
    return tmp;
}
void init()
{
    cnt=1;
    memset(ans,127,sizeof(ans));
    memset(head,0,sizeof(head));
}
bool visit[maxn];
void DFS(int x)
{
    visit[x]=1;
    for (int i=head[x]; i; i=edge[i].next)
        if (edge[i].cap && !visit[edge[i].to])
            DFS(edge[i].to);
}
void work(int L,int R)
{
    if (L==R) return;
    for (int i=2; i<=cnt; i+=2)
        edge[i].cap=edge[i^1].cap=(edge[i].cap+edge[i^1].cap)>>1;
    S=id[L],T=id[R];
    int maxflow=dinic();
    memset(visit,0,sizeof(visit)); DFS(S);
    for (int i=1; i<=n; i++) if (visit[i])
        for (int j=1; j<=n; j++) if (!visit[j])
            ans[i][j]=ans[j][i]=min(ans[i][j],maxflow);
    int l=L,r=R;
    for (int i=L; i<=R; i++)
        if (visit[id[i]])
            tmp[l++]=id[i];
        else tmp[r--]=id[i];
    for (int i=L; i<=R; i++) id[i]=tmp[i];
    work(L,l-1); work(r+1,R);
}
int main()
{
//    freopen("mincuto.in","r",stdin);
//    freopen("mincuto.out","w",stdout);
    t=read();
    while (t--)
        {
            init();
            n=read(),m=read();
            for (int i=1; i<=n; i++) id[i]=i;
            for (int u,v,w,i=1; i<=m; i++)
                u=read(),v=read(),w=read(),insert(u,v,w);
            work(1,n);
            q=read();
            for (int c,i=1; i<=q; i++)
                {
                    c=read(); int an=0;
                    for (int j=1; j<=n; j++)
                        for (int k=j+1; k<=n; k++)
                            if (ans[j][k]<=c) an++;
                    printf("%d\n",an);
                }
            puts("");
        }
    return 0;
}
时间: 2024-10-06 22:08:18

【BZOJ-2229】最小割 最小割树(最大流+分治)的相关文章

树的直径、树的重心与树的点分治

树的直径 树的直径(Diameter)是指树上的最长简单路. 直径的求法:两遍搜索 (BFS or DFS) 任选一点w为起点,对树进行搜索,找出离w最远的点u. 以u为起点,再进行搜索,找出离u最远的点v.则u到v的路径长度即为树的直径. 简单证明: 如果w在直径上,那么u一定是直径的一个端点.反证:若u不是端点,则从直径另一端点到w再到u的距离比直径更长,与假设矛盾. 如果w不在直径上,且w到其距最远点u的路径与直径一定有一交点c,那么由上一个证明可知,u是直径的一个端点. 如果w到最远点u

bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流???一看路牌....分治最小割?最小割树? 然后开始各种%论文... 简单来说吧,根据各种本蒟蒻不会证明的理论,那么:所有最小割都不是完全独立的,总共有n-1种(也就是树上的n-1条边)最小割 恰好和树的定义一样啊! 那么用一个solve递归函数来解决,一开始任意找两个点作为st和ed来最小割,然后分

bzoj 1797: [Ahoi2009]Mincut 最小割【tarjan+最小割】

先跑一遍最大流,然后对残量网络(即所有没有满流的边)进行tarjan缩点. 能成为最小割的边一定满流:因为最小割不可能割一半的边: 连接s.t所在联通块的满流边一定在最小割里:如果不割掉这条边的话,就能再次从s到t增广 连接两个不同联通块的满流边可能在最小割里:新图(即缩点后只有满流边的图)的任意一条s.t割都是最小割,所以可以任取割的方案 #include<iostream> #include<cstdio> #include<cstring> #include<

scu - 3254 - Rain and Fgj(最小点权割)

题意:N个点.M条边(2 <= N <= 1000 , 0 <= M <= 10^5),每一个点有个权值W(0 <= W <= 10^5),现要去除一些点(不能去掉点0),使得结点 0 与结点 N - 1 不连通,求去掉的点的最小权值和. 题目链接:http://cstest.scu.edu.cn/soj/problem.action?id=3254 -->>这是很明显的最小点权割.. 建图方案: 1)将全部点 i 拆成 i 和 i + N.i ->

3532: [Sdoi2014]Lis 最小字典序最小割

3532: [Sdoi2014]Lis Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 865  Solved: 311[Submit][Status][Discuss] Description 给定序列A,序列中的每一项Ai有删除代价Bi和附加属性Ci.请删除若干项,使得4的最长上升子序列长度减少至少1,且付出的代价之和最小,并输出方案.如果有多种方案,请输出将删去项的附加属性排序之后,字典序最小的一种. 这题难点在如何求一组最小字典序最小的最小

HDU2485 Destroying the bus stations(最小割---点割)

Destroying the bus stations Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2319    Accepted Submission(s): 743 Problem Description Gabiluso is one of the greatest spies in his country. Now he'

BZOJ 1927 星际竞速(最小费用最大流)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1927 题意:一个图,n个点.对于给出的每条边 u,v,w,表示u和v中编号小的那个到编号大的那个的时间为w.另外有n个值Ai,表示从任何一个点到达i点的时间为Ai.初始时你在n个点之外的一个 点上,我们称其为初始点B.要求从B出发,遍历n个点每个点一次,求最小时间.显然开始你只能使用Ai从B到达n个点中的某个点,因为B到n个点中没有其 他的边. 思路:因为最后停在了某个点上,那么从B出

关于最小代价子母树

第一次尝试写动态规划(Dynamic Planning)= 问题如下: ------------------------------------------------------------------------------------------------------------------------- 最小代价子母树 设有一排数,共n个,例如:22 14 7 13 26 15 11.任意2个相邻的数可以进行归并,归并的代价为该两个数的和,经过不断的归并,最后归为一堆,而全部归并代价的

BZOJ 1835 基站选址(线段树优化DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1835 题意:有N个村庄坐落在一条直线上,第 i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村 庄不超过Si的范围内建立了一个通讯基站,那么就成它被覆盖了.如果第i个村庄没有被覆盖,则需要向他们补偿,费用为Wi.现在的问题是,选择基站的位 置,使得总费用最小. 思路: 另外,程序中的n=n+1,m=

BZOJ 3211 花神游历各国 线段树题解

BZOJ 3211 花神游历各国 线段树题解 3211: 花神游历各国 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2551  Solved: 946[Submit][Status][Discuss] Description Input Output 每次x=1时,每行一个整数,表示这次旅行的开心度 Sample Input 4 1 100 5 5 5 1 1 2 2 1 2 1 1 2 2 2 3 1 1 4 Sample Output 101