Hadoop MapReduce编程 API入门系列之网页流量版本1(二十二)

  不多说,直接上代码。

  对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件。

代码

package zhouls.bigdata.myMapReduce.flowsum;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;

public class FlowBean implements WritableComparable<FlowBean>{

private String phoneNB;
private long up_flow;
private long d_flow;
private long s_flow;

//在反序列化时,反射机制需要调用空参构造函数,所以显示定义了一个空参构造函数
public FlowBean(){}

//为了对象数据的初始化方便,加入一个带参的构造函数
public FlowBean(String phoneNB, long up_flow, long d_flow) {
this.phoneNB = phoneNB;
this.up_flow = up_flow;
this.d_flow = d_flow;
this.s_flow = up_flow + d_flow;
}

public String getPhoneNB() {
return phoneNB;
}

public void setPhoneNB(String phoneNB) {
this.phoneNB = phoneNB;
}

public long getUp_flow() {
return up_flow;
}

public void setUp_flow(long up_flow) {
this.up_flow = up_flow;
}

public long getD_flow() {
return d_flow;
}

public void setD_flow(long d_flow) {
this.d_flow = d_flow;
}

public long getS_flow() {
return s_flow;
}

public void setS_flow(long s_flow) {
this.s_flow = s_flow;
}

//将对象数据序列化到流中
public void write(DataOutput out) throws IOException {

out.writeUTF(phoneNB);
out.writeLong(up_flow);
out.writeLong(d_flow);
out.writeLong(s_flow);

}

//从数据流中反序列出对象的数据
//从数据流中读出对象字段时,必须跟序列化时的顺序保持一致
public void readFields(DataInput in) throws IOException {

phoneNB = in.readUTF();
up_flow = in.readLong();
d_flow = in.readLong();
s_flow = in.readLong();

}

@Override
public String toString() {

return "" + up_flow + "\t" +d_flow + "\t" + s_flow;
}

public int compareTo(FlowBean o) {
return s_flow>o.getS_flow()?-1:1;
}

}

package zhouls.bigdata.myMapReduce.flowsum;

import java.io.IOException;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

/**
* FlowBean 是我们自定义的一种数据类型,要在hadoop的各个节点之间传输,应该遵循hadoop的序列化机制
* 就必须实现hadoop相应的序列化接口
*
*
*/
public class FlowSumMapper extends Mapper<LongWritable, Text, Text, FlowBean>{

//拿到日志中的一行数据,切分各个字段,抽取出我们需要的字段:手机号,上行流量,下行流量,然后封装成kv发送出去
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {

//拿一行数据
String line = value.toString();
//切分成各个字段
String[] fields = StringUtils.split(line, "\t");

//拿到我们需要的字段
String phoneNB = fields[1];
long u_flow = Long.parseLong(fields[7]);
long d_flow = Long.parseLong(fields[8]);

//封装数据为kv并输出
context.write(new Text(phoneNB), new FlowBean(phoneNB,u_flow,d_flow));

}

}

package zhouls.bigdata.myMapReduce.flowsum;

import java.io.IOException;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class FlowSumReducer extends Reducer<Text, FlowBean, Text, FlowBean>{

//框架每传递一组数据<1387788654,{flowbean,flowbean,flowbean,flowbean.....}>调用一次我们的reduce方法
//reduce中的业务逻辑就是遍历values,然后进行累加求和再输出
@Override
protected void reduce(Text key, Iterable<FlowBean> values,Context context)
throws IOException, InterruptedException {

long up_flow_counter = 0;
long d_flow_counter = 0;

for(FlowBean bean : values){

up_flow_counter += bean.getUp_flow();
d_flow_counter += bean.getD_flow();

}

context.write(key, new FlowBean(key.toString(), up_flow_counter, d_flow_counter));

}

}

package zhouls.bigdata.myMapReduce.flowsum;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.OutputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import zhouls.bigdata.myMapReduce.Anagram.Anagram;

//这是job描述和提交类的规范写法
public class FlowSumRunner extends Configured implements Tool{

public int run(String[] arg0) throws Exception {

Configuration conf = new Configuration();
Job job = Job.getInstance(conf);

job.setJarByClass(FlowSumRunner.class);

job.setMapperClass(FlowSumMapper.class);
job.setReducerClass(FlowSumReducer.class);

job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);

FileInputFormat.addInputPath(job, new Path(arg0[0]));// 文件输入路径
FileOutputFormat.setOutputPath(job, new Path(arg0[1]));// 文件输出路径
job.waitForCompletion(true);

return 0;
}

public static void main(String[] args) throws Exception {
//集群路径
// String[] args0 = { "hdfs://HadoopMaster:9000/flowSum/HTTP_20130313143750.dat",
// "hdfs://HadoopMaster:9000/out/flowSum"};

//本地路径
String[] args0 = { "./data/flowSum/HTTP_20130313143750.dat",
"./out/flowSum/"};

int ec = ToolRunner.run( new Configuration(), new FlowSumRunner(), args0);
System. exit(ec);
}

}

时间: 2024-10-13 19:48:24

Hadoop MapReduce编程 API入门系列之网页流量版本1(二十二)的相关文章

Hadoop MapReduce编程 API入门系列之网页流量版本1(二十一)

不多说,直接上代码. 对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件. 代码 package zhouls.bigdata.myMapReduce.areapartition; import java.io.DataInput;import java.io.DataOutput;import java.io.IOException; import org.apache.hadoop.io.Writable;import org.apache.hadoop.io.Writabl

Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce.ParseTVDataCompressAndCounter; import java.net.URI; import java.util.List;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Co

Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(九)

下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUnit 框架 MRUnit是Cloudera公司专为Hadoop MapReduce写的单元测试框架,API非常简洁实用.MRUnit针对不同测试对象使用不同的Driver: MapDriver:针对单独的Map测试  ReduceDriver:针对单独的Reduce测试    MapReduceDri

Hadoop MapReduce编程 API入门系列之处理Excel通话记录(二十)

不多说,直接上代码. 与家庭成员之间的通话记录一份,存储在Excel文件中,如下面的数据集所示.我们需要基于这份数据,统计每个月每个家庭成员给自己打电话的次数,并按月份输出到不同文件夹. 2016-12-12 20:04:10,203 INFO [zhouls.bigdata.myMapReduce.ExcelContactCount.ExcelContactCount$ExcelMapper] - Map processing finished2016-12-12 20:04:10,203 I

Hadoop MapReduce编程 API入门系列之FOF(Fund of Fund)(二十三)

不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.friend; import org.apache.hadoop.io.Text; public class Fof extends Text{//自定义Fof,表示f1和f2关系 public Fof(){//无参构造 super(); } public Fof(String a,String b){//有参构造 super(getFof(a, b)); } public static Strin

Hadoop MapReduce编程 API入门系列之统计学生成绩版本2(十八)

不多说,直接上代码. 统计出每个年龄段的 男.女 学生的最高分 这里,为了空格符的差错,直接,我们有时候,像如下这样的来排数据. 代码 package zhouls.bigdata.myMapReduce.Gender; import java.io.IOException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Configured;import org.apache.hadoop.fs

Hadoop MapReduce编程 API入门系列之统计学生成绩版本1(十七)

不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.ScoreCount; import java.io.IOException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FSDataInputStream;import org.apache.hadoop.fs.FileSystem;import org.apache.hadoop.fs.Path;

Hadoop MapReduce编程 API入门系列之倒排索引(二十四)

不多说,直接上代码. 2016-12-12 21:54:04,509 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Metrics with processName=JobTracker, sessionId=2016-12-12 21:54:05,166 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - Hadoop command-line option

Hadoop MapReduce编程 API入门系列之Crime数据分析(二十五)(未完)

不多说,直接上代码. 一共12列,我们只需提取有用的列:第二列(犯罪类型).第四列(一周的哪一天).第五列(具体时间)和第七列(犯罪场所). 思路分析 基于项目的需求,我们通过以下几步完成: 1.首先根据数据集,分别统计出不同犯罪类别在周时段内发生犯罪次数和不同区域在周时段内发生犯罪的次数. 2.然后根据第一步的输出结果,再按日期统计出每天每种犯罪类别在每个区域发生的犯罪次数. 3.将前两步的输出结果,按需求插入数据库,便于对犯罪数据的分析. 程序开发 我们要编写5个文件: 编写基类,MapRe