【动手学pytorch】softmax回归

一、什么是softmax?

有一个数组S,其元素为Si ,那么vi 的softmax值,就是该元素的指数与所有元素指数和的比值。具体公式表示为:

softmax回归本质上也是一种对数据的估计

二、交叉熵损失函数

在估计损失时,尤其是概率上的损失,交叉熵损失函数更加常用。下面是交叉熵

当我们预测单个物体(即每个样本只有1个标签),y(i)为我们构造的向量,其分量不是0就是1,并且只有一个1(第y(i)个数为1)。于是。交叉熵只关心对正确类别的预测概率,因为只要其值足够大,就可以确保分类结果正确。遇到一个样本有多个标签时,例如图像里含有不止一个物体时,我们并不能做这一步简化。但即便对于这种情况,交叉熵同样只关心对图像中出现的物体类别的预测概率。

交叉熵函数为:

三、获取Fashion-MNIST训练集和读取数据

我这里我们会使用torchvision包,它是服务于PyTorch深度学习框架的,主要用来构建计算机视觉模型。torchvision主要由以下几部分构成:

  1. torchvision.datasets: 一些加载数据的函数及常用的数据集接口;
  2. torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;
  3. torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;
  4. torchvision.utils: 其他的一些有用的方法。
  5. from IPython import display
    import matplotlib.pyplot as plt
    
    import torch
    import torchvision
    import torchvision.transforms as transforms
    import time
    
    import sys
    sys.path.append("/home/kesci/input")
    import d2lzh1981 as d2l
    
    #get datatest。如果不设置train的值,那么就同时返回train和test,此时的操作见“四”中的第二个代码块
    
    mnist_train = torchvision.datasets.FashionMNIST(root=‘/home/kesci/input/FashionMNIST2065‘, train=True, download=True, transform=transforms.ToTensor())
    mnist_test = torchvision.datasets.FashionMNIST(root=‘/home/kesci/input/FashionMNIST2065‘, train=False, download=True, transform=transforms.ToTensor())

    class torchvision.datasets.FashionMNIST(root, train=True, transform=None, target_transform=None, download=False)

    • root(string)– 数据集的根目录,其中存放processed/training.pt和processed/test.pt文件。
    • train(bool, 可选)– 如果设置为True,从training.pt创建数据集,否则从test.pt创建。
    • download(bool, 可选)– 如果设置为True,从互联网下载数据并放到root文件夹下。如果root目录下已经存在数据,不会再次下载。
    • transform(可被调用 , 可选)– 一种函数或变换,输入PIL图片,返回变换之后的数据。如:transforms.RandomCrop。
    • target_transform(可被调用 , 可选)– 一种函数或变换,输入目标,进行变换。
# show result
print(type(mnist_train))
print(len(mnist_train), len(mnist_test))

<class ‘torchvision.datasets.mnist.FashionMNIST‘>
60000 10000

# 我们可以通过下标来访问任意一个样本
feature, label = mnist_train[0]
print(feature.shape, label)  # Channel x Height x Width

torch.Size([1, 28, 28]) 9

#如果不做变换输入的数据是图像,我们可以看一下图片的类型参数
mnist_PIL = torchvision.datasets.FashionMNIST(root=‘/home/kesci/input/FashionMNIST2065‘, train=True, download=True)
PIL_feature, label = mnist_PIL[0]
print(PIL_feature)

<PIL.Image.Image image mode=L size=28x28 at 0x7F54A41612E8>
# 本函数已保存在d2lzh包中方便以后使用
def get_fashion_mnist_labels(labels):
    text_labels = [‘t-shirt‘, ‘trouser‘, ‘pullover‘, ‘dress‘, ‘coat‘,
                   ‘sandal‘, ‘shirt‘, ‘sneaker‘, ‘bag‘, ‘ankle boot‘]
    return [text_labels[int(i)] for i in labels]

def show_fashion_mnist(images, labels):
    d2l.use_svg_display()
    # 这里的_表示我们忽略(不使用)的变量
    _, figs = plt.subplots(1, len(images), figsize=(12, 12))
    for f, img, lbl in zip(figs, images, labels):
        f.imshow(img.view((28, 28)).numpy())
        f.set_title(lbl)
        f.axes.get_xaxis().set_visible(False)
        f.axes.get_yaxis().set_visible(False)
    plt.show()

X, y = [], []
for i in range(10):
    X.append(mnist_train[i][0]) # 将第i个feature加到X中
    y.append(mnist_train[i][1]) # 将第i个label加到y中
show_fashion_mnist(X, get_fashion_mnist_labels(y))

# 读取数据
batch_size = 256
num_workers = 4

train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)

start = time.time()
for X, y in train_iter:
    continue
print(‘%.2f sec‘ % (time.time() - start))

四、从零开始的softmax

import torch
import torchvision
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
 1 #获取训练集数据和测试集数据
 2 batch_size = 256
 3 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, root=‘/home/kesci/input/FashionMNIST2065‘)
 4
 5 #模型参数初始化
 6 num_inputs = 784
 7 print(28*28)
 8 num_outputs = 10
 9
10 W = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_outputs)), dtype=torch.float)
11 b = torch.zeros(num_outputs, dtype=torch.float)
12
13 784
14
15 W.requires_grad_(requires_grad=True)
16 b.requires_grad_(requires_grad=True)
#对多维数组的操作
X = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(X.sum(dim=0, keepdim=True))  # dim为0,按照相同的列求和,并在结果中保留列特征
print(X.sum(dim=1, keepdim=True))  # dim为1,按照相同的行求和,并在结果中保留行特征
print(X.sum(dim=0, keepdim=False)) # dim为0,按照相同的列求和,不在结果中保留列特征
print(X.sum(dim=1, keepdim=False)) # dim为1,按照相同的行求和,不在结果中保留行特征

tensor([[5, 7, 9]])
tensor([[ 6],
        [15]])
tensor([5, 7, 9])
tensor([ 6, 15])

定义softmax:

 1 def softmax(X):
 2     X_exp = X.exp()                                            #对所有分量求exp
 3     partition = X_exp.sum(dim=1, keepdim=True)
 4     print("X size is ", X_exp)
 5     print("partition size is ", partition, partition.size())
 6     return X_exp / partition
 7
 8 X = torch.rand((2, 5))
 9 X_prob = softmax(X)
10 print(X_prob, ‘\n‘, X_prob.sum(dim=1))
11
12 #如果我们不在sum那一步设置 keepdim=True,那么partition会变成一个1×2而不是2×1的矩阵
13
14 X size is  tensor([[2.1143, 1.4179, 2.1258, 2.3031, 1.2574],
15         [1.1700, 1.1645, 1.1296, 1.8801, 1.3726]])
16 partition size is  tensor([[9.2185],
17         [6.7168]]) torch.Size([2, 1])
18
19 tensor([[0.2253, 0.1823, 0.1943, 0.2275, 0.1706],
20         [0.1588, 0.2409, 0.2310, 0.1670, 0.2024]])
21 tensor([1.0000, 1.0000])    #说明所有样本出现的概率之和为1

建立回归模型

def net(X):
    #行维度未知,列维度为输入值。此时写为.view(-1,num_inputs)。即行列哪一个未知,哪一个就写-1。    #如果是torch.view(-1),则原张量会变成一维的结构。即把所有分量全部整合到一个向量中
    return softmax(torch.mm(X.view((-1, num_inputs)), W) + b)

定义损失函数

def cross_entropy(y_hat, y):
    return - torch.log(y_hat.gather(1, y.view(-1, 1)))#取对应第y(i)个的y_hat

补充:gather(input, dim, index)或input.gather(dim,index)

index由tensor类型提供。dim主要决定以行(0)还是以列(1)进行运算

下面的例子中因为按照列,并且

y.view(-1, 1)=(0,2)‘,为列向量所以下面代码的意思是,按照列来看,取第一行的第0列分量(0.1)和第二行的第2列分量(0.5)
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y = torch.LongTensor([0, 2])
y_hat.gather(1, y.view(-1, 1))

tensor([[0.1000],
        [0.5000]])

定义准确率

完成预测后需要准确率函数进行检验

def accuracy(y_hat, y):
    return (y_hat.argmax(dim=1) == y).float().mean().item()  #.argmax(dim=1)按照行取最大值。#如果与真实值相同就为1,否则为0.然后计算他们的平均值
print(accuracy(y_hat, y))

# 求平均准确率。本函数已保存在d2lzh_pytorch包中方便以后使用。该函数将被逐步改进:它的完整实现将在“图像增广”一节中描述
def evaluate_accuracy(data_iter, net):
    acc_sum, n = 0.0, 0
    for X, y in data_iter:
        acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
        n += y.shape[0]
    return acc_sum / n

print(evaluate_accuracy(test_iter, net))

训练模型

num_epochs, lr = 5, 0.1

# 本函数已保存在d2lzh_pytorch包中方便以后使用
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
              params=None, lr=None, optimizer=None):
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n = 0.0, 0.0, 0     #train_l为训练损失,train_acc为训练准确率
        for X, y in train_iter:
            y_hat = net(X)
            l = loss(y_hat, y).sum()

            # 梯度清零
            if optimizer is not None:
                optimizer.zero_grad()
            elif params is not None and params[0].grad is not None:
                for param in params:
                    param.grad.data.zero_()

            l.backward()
            if optimizer is None:
                d2l.sgd(params, lr, batch_size)
            else:
                optimizer.step() 

            train_l_sum += l.item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
            n += y.shape[0]
        test_acc = evaluate_accuracy(test_iter, net)
        print(‘epoch %d, loss %.4f, train acc %.3f, test acc %.3f‘
              % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))

train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size, [W, b], lr)

模型预测

现在我们的模型训练完了,可以进行一下预测,我们的这个模型训练的到底准确不准确。 现在就可以演示如何对图像进行分类了。给定一系列图像(第三行图像输出),我们比较一下它们的真实标签(第一行文本输出)和模型预测结果(第二行文本输出)。

X, y = iter(test_iter).next()

true_labels = d2l.get_fashion_mnist_labels(y.numpy())#真实标签
pred_labels = d2l.get_fashion_mnist_labels(net(X).argmax(dim=1).numpy())#预测标签
titles = [true + ‘\n‘ + pred for true, pred in zip(true_labels, pred_labels)]

d2l.show_fashion_mnist(X[0:9], titles[0:9])

五、pytorch的简单实现

import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l

#初始化参数和获取数据
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, root=‘/home/kesci/input/FashionMNIST2065‘)

#定义网络模型(即回归模型)
num_inputs = 784    #28×28
num_outputs = 10    #10种类型的图片

class LinearNet(nn.Module):
    def __init__(self, num_inputs, num_outputs):
        super(LinearNet, self).__init__()
        self.linear = nn.Linear(num_inputs, num_outputs)
    def forward(self, x): # x 的形状: (batch, 1, 28, 28)
        y = self.linear(x.view(x.shape[0], -1))
        return y

# net = LinearNet(num_inputs, num_outputs)

class FlattenLayer(nn.Module):
    def __init__(self):
        super(FlattenLayer, self).__init__()
    def forward(self, x): # x 的形状: (batch, *, *, ...)
        return x.view(x.shape[0], -1)

from collections import OrderedDict
net = nn.Sequential(
        # FlattenLayer(),
        # LinearNet(num_inputs, num_outputs)
        OrderedDict([
           (‘flatten‘, FlattenLayer()),
           (‘linear‘, nn.Linear(num_inputs, num_outputs))]) # 或者写成我们自己定义的 LinearNet(num_inputs, num_outputs) 也可以
        )

 #初始化模型参数
init.normal_(net.linear.weight, mean=0, std=0.01)
init.constant_(net.linear.bias, val=0)

#定义损失函数
loss = nn.CrossEntropyLoss() # 下面是他的函数原型
# class torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction=‘mean‘)

#定义优化函数
optimizer = torch.optim.SGD(net.parameters(), lr=0.1) # 下面是函数原型
# class torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)

#训练
num_epochs = 5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)

原文地址:https://www.cnblogs.com/PKU-CD/p/12301805.html

时间: 2024-10-29 04:35:23

【动手学pytorch】softmax回归的相关文章

小白学习之pytorch框架(4)-softmax回归(torch.gather()、torch.argmax())

学习pytorch路程之动手学深度学习-3.4-3.7 置信度.置信区间参考:https://cloud.tencent.com/developer/news/452418 本人感觉还是挺好理解的 交叉熵参考博客:https://www.cnblogs.com/kyrieng/p/8694705.html   https://blog.csdn.net/tsyccnh/article/details/79163834  个人感觉还不错,好理解 (这段瞅瞅就行了)torchvision包,服务于P

小白学习之pytorch框架(2)-动手学深度学习(begin)

在这向大家推荐一本书-花书-动手学深度学习pytorch版,原书用的深度学习框架是MXNet,这个框架经过Gluon重新再封装,使用风格非常接近pytorch,但是由于pytorch越来越火,个人又比较执着,想学pytorch,好,有个大神来了,把<动手学深度学习>整本书用pytorch代码重现了,其GitHub网址为:https://github.com/ShusenTang/Dive-into-DL-PyTorch   原书GitHub网址为:https://github.com/d2l-

DataWhale 动手学深度学习PyTorch版-task3+4+5:文本预处理;语言模型;循环神经网络基础

课程引用自伯禹平台:https://www.boyuai.com/elites/course/cZu18YmweLv10OeV <动手学深度学习>官方网址:http://zh.gluon.ai/ ——面向中文读者的能运行.可讨论的深度学习教科书. 第二次打卡: Task03: 过拟合.欠拟合及其解决方案:梯度消失.梯度爆炸:循环神经网络进阶 Task04:机器翻译及相关技术:注意力机制与Seq2seq模型:Transformer Task05:卷积神经网络基础:leNet:卷积神经网络进阶 有

Haskell手撸Softmax回归实现MNIST手写识别

Haskell手撸Softmax回归实现MNIST手写识别 前言 初学Haskell,看的书是Learn You a Haskell for Great Good, 才刚看到Making Our Own Types and Typeclasses这一章. 为了加深对Haskell的理解,便动手写了个Softmax回归.纯粹造轮子,只用了base. 显示图片虽然用了OpenGL,但是本文不会提到关于OpenGL的内容.虽说是造轮子, 但是这轮子造得还是使我受益匪浅.Softmax回归方面的内容参考

机器学习 —— 基础整理(五):线性回归;二项Logistic回归;Softmax回归;广义线性模型

本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 二项Logistic回归是我去年入门机器学习时学的第一个模型,我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开的地方).比较有意思的是那时候还不会矩阵微积分,推导梯度时还是把矩阵全都展开求的(牛顿法要用的二阶梯度也是)... 下面的文字中,"Logistic回归"都表示用于二分类的二项Logistic回归. 首先约定一下记号

ufldl学习笔记与编程作业:Softmax Regression(softmax回归)

ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl. 于是最近就开始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ softmax回归其实是逻

1.线性回归、Logistic回归、Softmax回归

本次回归章节的思维导图版总结已经总结完毕,但自我感觉不甚理想.不知道是模型太简单还是由于自己本身的原因,总结出来的东西感觉很少,好像知识点都覆盖上了,但乍一看,好像又什么都没有.不管怎样,算是一次尝试吧,慢慢地再来改进.在这里再梳理一下吧! 线性回归(Linear Regression) 什么是回归? 给定一些数据,{(x1,y1),(x2,y2)-(xn,yn) },x的值来预测y的值,通常地,y的值是连续的就是回归问题,y的值是离散的就叫分类问题. 高尔顿的发现,身高的例子就是回归的典型模型

重学 PyTorch Tutorial

重学 PyTorch Tutorial 按照<动手学习深度学习>的章节组织,参照 PyTroch Tutorial 和 Docs 来重新学习 PyTorch,为了今后基于 BERT 的 NLI 研究打基础. 数据操作 内容参考自 Deep Learning with PyTorch: A 60 Munute Blitz 之 What is PyTorch (https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

Softmax回归(Softmax Regression, K分类问题)

Softmax回归:K分类问题, 2分类的logistic回归的推广.其概率表示为: 对于一般训练集: 系统参数为: Softmax回归与Logistic回归的关系 当Softmax回归用于2分类问题,那么可以得到: 令θ=θ0-θ1,就得到了logistic回归.所以实际上logistic回归虽然有2个参数向量,但这2个参数向量可以退化到1个参数向量.推广到K个类别,那么就需要K-1个参数向量 参数求解 类似于logistic regression,求最大似然概率,有: 其中1{k=y}为真值