一、什么是softmax?
有一个数组S,其元素为Si ,那么vi 的softmax值,就是该元素的指数与所有元素指数和的比值。具体公式表示为:
softmax回归本质上也是一种对数据的估计
二、交叉熵损失函数
在估计损失时,尤其是概率上的损失,交叉熵损失函数更加常用。下面是交叉熵
当我们预测单个物体(即每个样本只有1个标签),y(i)为我们构造的向量,其分量不是0就是1,并且只有一个1(第y(i)个数为1)。于是。交叉熵只关心对正确类别的预测概率,因为只要其值足够大,就可以确保分类结果正确。遇到一个样本有多个标签时,例如图像里含有不止一个物体时,我们并不能做这一步简化。但即便对于这种情况,交叉熵同样只关心对图像中出现的物体类别的预测概率。
交叉熵函数为:
三、获取Fashion-MNIST训练集和读取数据
我这里我们会使用torchvision包,它是服务于PyTorch深度学习框架的,主要用来构建计算机视觉模型。torchvision主要由以下几部分构成:
- torchvision.datasets: 一些加载数据的函数及常用的数据集接口;
- torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;
- torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;
- torchvision.utils: 其他的一些有用的方法。
-
from IPython import display import matplotlib.pyplot as plt import torch import torchvision import torchvision.transforms as transforms import time import sys sys.path.append("/home/kesci/input") import d2lzh1981 as d2l #get datatest。如果不设置train的值,那么就同时返回train和test,此时的操作见“四”中的第二个代码块 mnist_train = torchvision.datasets.FashionMNIST(root=‘/home/kesci/input/FashionMNIST2065‘, train=True, download=True, transform=transforms.ToTensor()) mnist_test = torchvision.datasets.FashionMNIST(root=‘/home/kesci/input/FashionMNIST2065‘, train=False, download=True, transform=transforms.ToTensor())
class torchvision.datasets.FashionMNIST(root, train=True, transform=None, target_transform=None, download=False)
- root(string)– 数据集的根目录,其中存放processed/training.pt和processed/test.pt文件。
- train(bool, 可选)– 如果设置为True,从training.pt创建数据集,否则从test.pt创建。
- download(bool, 可选)– 如果设置为True,从互联网下载数据并放到root文件夹下。如果root目录下已经存在数据,不会再次下载。
- transform(可被调用 , 可选)– 一种函数或变换,输入PIL图片,返回变换之后的数据。如:transforms.RandomCrop。
- target_transform(可被调用 , 可选)– 一种函数或变换,输入目标,进行变换。
# show result print(type(mnist_train)) print(len(mnist_train), len(mnist_test)) <class ‘torchvision.datasets.mnist.FashionMNIST‘> 60000 10000 # 我们可以通过下标来访问任意一个样本 feature, label = mnist_train[0] print(feature.shape, label) # Channel x Height x Width torch.Size([1, 28, 28]) 9 #如果不做变换输入的数据是图像,我们可以看一下图片的类型参数 mnist_PIL = torchvision.datasets.FashionMNIST(root=‘/home/kesci/input/FashionMNIST2065‘, train=True, download=True) PIL_feature, label = mnist_PIL[0] print(PIL_feature) <PIL.Image.Image image mode=L size=28x28 at 0x7F54A41612E8>
# 本函数已保存在d2lzh包中方便以后使用 def get_fashion_mnist_labels(labels): text_labels = [‘t-shirt‘, ‘trouser‘, ‘pullover‘, ‘dress‘, ‘coat‘, ‘sandal‘, ‘shirt‘, ‘sneaker‘, ‘bag‘, ‘ankle boot‘] return [text_labels[int(i)] for i in labels] def show_fashion_mnist(images, labels): d2l.use_svg_display() # 这里的_表示我们忽略(不使用)的变量 _, figs = plt.subplots(1, len(images), figsize=(12, 12)) for f, img, lbl in zip(figs, images, labels): f.imshow(img.view((28, 28)).numpy()) f.set_title(lbl) f.axes.get_xaxis().set_visible(False) f.axes.get_yaxis().set_visible(False) plt.show() X, y = [], [] for i in range(10): X.append(mnist_train[i][0]) # 将第i个feature加到X中 y.append(mnist_train[i][1]) # 将第i个label加到y中 show_fashion_mnist(X, get_fashion_mnist_labels(y)) # 读取数据 batch_size = 256 num_workers = 4 train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers) test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers) start = time.time() for X, y in train_iter: continue print(‘%.2f sec‘ % (time.time() - start))
四、从零开始的softmax
import torch import torchvision import numpy as np import sys sys.path.append("/home/kesci/input") import d2lzh1981 as d2l
1 #获取训练集数据和测试集数据 2 batch_size = 256 3 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, root=‘/home/kesci/input/FashionMNIST2065‘) 4 5 #模型参数初始化 6 num_inputs = 784 7 print(28*28) 8 num_outputs = 10 9 10 W = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_outputs)), dtype=torch.float) 11 b = torch.zeros(num_outputs, dtype=torch.float) 12 13 784 14 15 W.requires_grad_(requires_grad=True) 16 b.requires_grad_(requires_grad=True)
#对多维数组的操作 X = torch.tensor([[1, 2, 3], [4, 5, 6]]) print(X.sum(dim=0, keepdim=True)) # dim为0,按照相同的列求和,并在结果中保留列特征 print(X.sum(dim=1, keepdim=True)) # dim为1,按照相同的行求和,并在结果中保留行特征 print(X.sum(dim=0, keepdim=False)) # dim为0,按照相同的列求和,不在结果中保留列特征 print(X.sum(dim=1, keepdim=False)) # dim为1,按照相同的行求和,不在结果中保留行特征 tensor([[5, 7, 9]]) tensor([[ 6], [15]]) tensor([5, 7, 9]) tensor([ 6, 15])
定义softmax:
1 def softmax(X): 2 X_exp = X.exp() #对所有分量求exp 3 partition = X_exp.sum(dim=1, keepdim=True) 4 print("X size is ", X_exp) 5 print("partition size is ", partition, partition.size()) 6 return X_exp / partition 7 8 X = torch.rand((2, 5)) 9 X_prob = softmax(X) 10 print(X_prob, ‘\n‘, X_prob.sum(dim=1)) 11 12 #如果我们不在sum那一步设置 keepdim=True,那么partition会变成一个1×2而不是2×1的矩阵 13 14 X size is tensor([[2.1143, 1.4179, 2.1258, 2.3031, 1.2574], 15 [1.1700, 1.1645, 1.1296, 1.8801, 1.3726]]) 16 partition size is tensor([[9.2185], 17 [6.7168]]) torch.Size([2, 1]) 18 19 tensor([[0.2253, 0.1823, 0.1943, 0.2275, 0.1706], 20 [0.1588, 0.2409, 0.2310, 0.1670, 0.2024]]) 21 tensor([1.0000, 1.0000]) #说明所有样本出现的概率之和为1
建立回归模型
def net(X): #行维度未知,列维度为输入值。此时写为.view(-1,num_inputs)。即行列哪一个未知,哪一个就写-1。 #如果是torch.view(-1),则原张量会变成一维的结构。即把所有分量全部整合到一个向量中 return softmax(torch.mm(X.view((-1, num_inputs)), W) + b)
定义损失函数
def cross_entropy(y_hat, y): return - torch.log(y_hat.gather(1, y.view(-1, 1)))#取对应第y(i)个的y_hat
补充:gather(input, dim, index)或input.gather(dim,index)
index由tensor类型提供。dim主要决定以行(0)还是以列(1)进行运算
下面的例子中因为按照列,并且
y.view(-1, 1)=(0,2)‘,为列向量所以下面代码的意思是,按照列来看,取第一行的第0列分量(0.1)和第二行的第2列分量(0.5)
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]]) y = torch.LongTensor([0, 2]) y_hat.gather(1, y.view(-1, 1)) tensor([[0.1000], [0.5000]])
定义准确率
完成预测后需要准确率函数进行检验
def accuracy(y_hat, y): return (y_hat.argmax(dim=1) == y).float().mean().item() #.argmax(dim=1)按照行取最大值。#如果与真实值相同就为1,否则为0.然后计算他们的平均值 print(accuracy(y_hat, y)) # 求平均准确率。本函数已保存在d2lzh_pytorch包中方便以后使用。该函数将被逐步改进:它的完整实现将在“图像增广”一节中描述 def evaluate_accuracy(data_iter, net): acc_sum, n = 0.0, 0 for X, y in data_iter: acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() n += y.shape[0] return acc_sum / n print(evaluate_accuracy(test_iter, net))
训练模型
num_epochs, lr = 5, 0.1 # 本函数已保存在d2lzh_pytorch包中方便以后使用 def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params=None, lr=None, optimizer=None): for epoch in range(num_epochs): train_l_sum, train_acc_sum, n = 0.0, 0.0, 0 #train_l为训练损失,train_acc为训练准确率 for X, y in train_iter: y_hat = net(X) l = loss(y_hat, y).sum() # 梯度清零 if optimizer is not None: optimizer.zero_grad() elif params is not None and params[0].grad is not None: for param in params: param.grad.data.zero_() l.backward() if optimizer is None: d2l.sgd(params, lr, batch_size) else: optimizer.step() train_l_sum += l.item() train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item() n += y.shape[0] test_acc = evaluate_accuracy(test_iter, net) print(‘epoch %d, loss %.4f, train acc %.3f, test acc %.3f‘ % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc)) train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size, [W, b], lr)
模型预测
现在我们的模型训练完了,可以进行一下预测,我们的这个模型训练的到底准确不准确。 现在就可以演示如何对图像进行分类了。给定一系列图像(第三行图像输出),我们比较一下它们的真实标签(第一行文本输出)和模型预测结果(第二行文本输出)。
X, y = iter(test_iter).next() true_labels = d2l.get_fashion_mnist_labels(y.numpy())#真实标签 pred_labels = d2l.get_fashion_mnist_labels(net(X).argmax(dim=1).numpy())#预测标签 titles = [true + ‘\n‘ + pred for true, pred in zip(true_labels, pred_labels)] d2l.show_fashion_mnist(X[0:9], titles[0:9])
五、pytorch的简单实现
import torch from torch import nn from torch.nn import init import numpy as np import sys sys.path.append("/home/kesci/input") import d2lzh1981 as d2l #初始化参数和获取数据 batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, root=‘/home/kesci/input/FashionMNIST2065‘) #定义网络模型(即回归模型) num_inputs = 784 #28×28 num_outputs = 10 #10种类型的图片 class LinearNet(nn.Module): def __init__(self, num_inputs, num_outputs): super(LinearNet, self).__init__() self.linear = nn.Linear(num_inputs, num_outputs) def forward(self, x): # x 的形状: (batch, 1, 28, 28) y = self.linear(x.view(x.shape[0], -1)) return y # net = LinearNet(num_inputs, num_outputs) class FlattenLayer(nn.Module): def __init__(self): super(FlattenLayer, self).__init__() def forward(self, x): # x 的形状: (batch, *, *, ...) return x.view(x.shape[0], -1) from collections import OrderedDict net = nn.Sequential( # FlattenLayer(), # LinearNet(num_inputs, num_outputs) OrderedDict([ (‘flatten‘, FlattenLayer()), (‘linear‘, nn.Linear(num_inputs, num_outputs))]) # 或者写成我们自己定义的 LinearNet(num_inputs, num_outputs) 也可以 ) #初始化模型参数 init.normal_(net.linear.weight, mean=0, std=0.01) init.constant_(net.linear.bias, val=0) #定义损失函数 loss = nn.CrossEntropyLoss() # 下面是他的函数原型 # class torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction=‘mean‘) #定义优化函数 optimizer = torch.optim.SGD(net.parameters(), lr=0.1) # 下面是函数原型 # class torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False) #训练 num_epochs = 5 d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
原文地址:https://www.cnblogs.com/PKU-CD/p/12301805.html