深度学习之逻辑回归的实现

1 什么是逻辑回归

1.1逻辑回归与线性回归的区别:

  线性回归预测的是一个连续的值,不论是单变量还是多变量(比如多层感知器),他都返回的是一个连续的值,放在图中就是条连续的曲线,他常用来表示的数学方法是Y=aX+b;

  与之相对的,逻辑回归给出的值并不是连续的,而是 类似于“是” 和 “否” 的回答,这就类似于二元分类的问题。

1.2逻辑回归实现(sigmoid):

  在逻辑回归算法中,我们常使用的激活函数是Sigmoid函数,他能够将数据映射到 0 到 1 之间,并且通过映射判断,如果映射到的值在 1 ,就返回出一个正面的结果,与之相反,当映射的值为0时就返回一个负面的结果,这就是我们上面所提到的回答: “是”或“否”。那么,什么是Sigmoid函数呢?

  Sigmoid函数是一种在生物学中常见的S型函数,也称为S型生长曲线,他的值我们可以看做是恒在 0  到  1 之间的(因为这段区间使我们真正所关心的)。sigmoid的形式如下图所示:   

  深度学习网络本质上来说也是一种多层映射网络,当我们输入特征后,在通过如多层感知器的映射后,会一层层的映射到一个最终的形式。使用Sigmoid函数的意义就在于,他会在最后的映射中将结果映射成为0 到 1 之间的值,这时候我们就可以将映射后的值看做是神经网络给出的概率的结果。

1.3逻辑回归的常用损失函数(交叉熵):

  在线性回归中,我们常用 “mse” (平方差) 来进行损失的刻画,但是“mse”一般来进行惩罚的是损失与原有的数据集在同一个数量级的情况,假如说数量级特别的庞大,但是损失值比较小,那么所得到的损失就会很小,不利于我们的训练。针对这种情形,我们在逻辑回归中(同时在大多数的分类问题中)使用更有效的方法————交叉熵,他会给我们展现出一种更大的损失。下面这个图就直观的显示出了L2(均方差)与logistic(交叉熵)之间关于在处理损失的差别。

 

  在keras中,我们使用的函数是binary_crossentropy,下面会以一个例子的形式来使用交叉熵实现逻辑回归。



2逻辑回归的简单实现

  这是一个关于信用卡是否存在欺诈行为的预测。

   我们给出部分数据集,并查看是否为一个二分类问题

data = pd.read_csv(‘tensorflow_study\dataset\credit-a.csv‘)

# 查看数据
print(data.head())
# 查看数据是否为二分类问题
print(data.iloc[:,-1].value_counts())

  然后,我们取出数据,并建立一个神经网络模型,这里采用两个隐藏层,使得训练时拟合程度更高一些。

# 取出除了最后一列的所有数据
x = data.iloc[:, :-1]
# 取出数据并进行替换
y = data.iloc[:, -1].replace(-1,0)

# 模拟神经网络创建顺序模型,添加两个隐藏层
# 第一层是获取到的4个单元的隐藏层,数据集是15个数据的元组,使用relu激活
# 第二层是一个简单的数据处理层
# 第三层是输出层,使用Sigmoid进行激活,完成映射
model = tf.keras.Sequential(
    [tf.keras.layers.Dense(4,input_shape=(15,),activation=‘relu‘),
    tf.keras.layers.Dense(4,activation=‘relu‘),
    tf.keras.layers.Dense(1,activation=‘sigmoid‘)]
)

model.summary()

  查看一下我们创建的模型是否符合我们的需求

  再配置一个优化器,采用TensorFlow的梯度下降算法进行优化,使用交叉熵作为损失函数,并计算其正确率,开始训练我们的模型,再调用原始数据集中的前三个数据进行预测测试。

model.summary()

# 配置优化器
# 使用梯度下降算法进行优化,使用交叉熵作为损失函数,并计算其正确率
model.compile(
    optimizer=‘adam‘,
    loss=‘binary_crossentropy‘,
    metrics=[‘acc‘]
)

# 训练模型
history = model.fit(x,y,epochs=100)

 t_data = data.iloc[:3,:-1]

 print(model.predict(t_data))

  结果显而易见

  这时候,我们也可以通过pandas进行对我们模型的训练过程进行可视化查看,方便我们能够更加准确的针对我们的模型训练做一些改进。

# 查看我们在训练过程中的loss和acc的变化情况
# 散点图展示数据
plt.figure(1)

ax1 = plt.subplot(2,1,1)
ax2 = plt.subplot(2,1,2)
plt.sca(ax1)
plt.title(‘loss ‘)
plt.plot(history.epoch,history.history.get(‘loss‘))
plt.sca(ax2)
plt.title(‘acc ‘)
plt.plot(history.epoch,history.history.get(‘acc‘))
plt.show()

  在这里,我们就会明显的发现,当我们训练到18次的时候,loss的变化就趋于稳定状态了,二acc也是跟随着loss的稳定趋于更小的波动。

::下面附上源码和数据

‘‘‘
@Author: mountain
@Date: 2020-03-30 16:11:00
@Description: 逻辑回归 --预测信用卡是否存在欺诈行为
‘‘‘
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf

data = pd.read_csv(‘tensorflow_study\dataset\credit-a.csv‘)

# 查看数据
print(data.head())
# 查看数据是否为二分类问题
print(data.iloc[:,-1].value_counts())

# 取出除了最后一列的所有数据
x = data.iloc[:, :-1]
# 取出数据并进行替换
y = data.iloc[:, -1].replace(-1,0)

# 模拟神经网络创建顺序模型,添加两个隐藏层
# 第一层是获取到的4个单元的隐藏层,数据集是15个数据的元组,使用relu激活
# 第二层是一个简单的数据处理层
# 第三层是输出层,使用Sigmoid进行激活,完成映射
model = tf.keras.Sequential(
    [tf.keras.layers.Dense(4,input_shape=(15,),activation=‘relu‘),
    tf.keras.layers.Dense(4,activation=‘relu‘),
    tf.keras.layers.Dense(1,activation=‘sigmoid‘)]
)

model.summary()

# 配置优化器
# 使用梯度下降算法进行优化,使用交叉熵作为损失函数,并计算其正确率
model.compile(
    optimizer=‘adam‘,
    loss=‘binary_crossentropy‘,
    metrics=[‘acc‘]
)

# 训练模型
history = model.fit(x,y,epochs=100)

t_data = data.iloc[:3,:-1]
print(model.predict(t_data))

# 查看我们在训练过程中的loss和acc的变化情况
# 散点图展示数据
plt.figure(1)

ax1 = plt.subplot(2,1,1)
ax2 = plt.subplot(2,1,2)
plt.sca(ax1)
plt.title(‘loss ‘)
plt.plot(history.epoch,history.history.get(‘loss‘))
plt.sca(ax2)
plt.title(‘acc ‘)
plt.plot(history.epoch,history.history.get(‘acc‘))
plt.show()

ljhg

0,30.83,0,0,0,9,0,1.25,0,0,1,1,0,202,0,-1
1,58.67,4.46,0,0,8,1,3.04,0,0,6,1,0,43,560,-1
1,24.5,0.5,0,0,8,1,1.5,0,1,0,1,0,280,824,-1
0,27.83,1.54,0,0,9,0,3.75,0,0,5,0,0,100,3,-1
0,20.17,5.625,0,0,9,0,1.71,0,1,0,1,2,120,0,-1
0,32.08,4,0,0,6,0,2.5,0,1,0,0,0,360,0,-1
0,33.17,1.04,0,0,7,1,6.5,0,1,0,0,0,164,31285,-1
1,22.92,11.585,0,0,2,0,0.04,0,1,0,1,0,80,1349,-1
0,54.42,0.5,1,1,5,1,3.96,0,1,0,1,0,180,314,-1
0,42.5,4.915,1,1,9,0,3.165,0,1,0,0,0,52,1442,-1
0,22.08,0.83,0,0,0,1,2.165,1,1,0,0,0,128,0,-1
0,29.92,1.835,0,0,0,1,4.335,0,1,0,1,0,260,200,-1
1,38.25,6,0,0,5,0,1,0,1,0,0,0,0,0,-1
0,48.08,6.04,0,0,5,0,0.04,1,1,0,1,0,0,2690,-1
1,45.83,10.5,0,0,8,0,5,0,0,7,0,0,0,0,-1
0,36.67,4.415,1,1,5,0,0.25,0,0,10,0,0,320,0,-1
0,28.25,0.875,0,0,6,0,0.96,0,0,3,0,0,396,0,-1
1,23.25,5.875,0,0,8,0,3.17,0,0,10,1,0,120,245,-1
0,21.83,0.25,0,0,1,1,0.665,0,1,0,0,0,0,0,-1
1,19.17,8.585,0,0,2,1,0.75,0,0,7,1,0,96,0,-1
0,25,11.25,0,0,0,0,2.5,0,0,17,1,0,200,1208,-1
0,23.25,1,0,0,0,0,0.835,0,1,0,1,2,300,0,-1
1,47.75,8,0,0,0,0,7.875,0,0,6,0,0,0,1260,-1
1,27.42,14.5,0,0,10,1,3.085,0,0,1,1,0,120,11,-1
1,41.17,6.5,0,0,8,0,0.5,0,0,3,0,0,145,0,-1
1,15.83,0.585,0,0,0,1,1.5,0,0,2,1,0,100,0,-1
1,47,13,0,0,3,2,5.165,0,0,9,0,0,0,0,-1
0,56.58,18.5,0,0,1,2,15,0,0,17,0,0,0,0,-1
0,57.42,8.5,0,0,11,1,7,0,0,3,1,0,0,0,-1
0,42.08,1.04,0,0,9,0,5,0,0,6,0,0,500,10000,-1
0,29.25,14.79,0,0,12,0,5.04,0,0,5,0,0,168,0,-1
0,42,9.79,0,0,10,1,7.96,0,0,8,1,0,0,0,-1
0,49.5,7.585,0,0,3,2,7.585,0,0,15,0,0,0,5000,-1
1,36.75,5.125,0,0,11,0,5,0,1,0,0,0,0,4000,-1
1,22.58,10.75,0,0,8,0,0.415,0,0,5,0,0,0,560,-1
0,27.83,1.5,0,0,9,0,2,0,0,11,0,0,434,35,-1
0,27.25,1.585,0,0,2,1,1.835,0,0,12,0,0,583,713,-1
1,23,11.75,0,0,10,1,0.5,0,0,2,0,0,300,551,-1
0,27.75,0.585,1,1,2,0,0.25,0,0,2,1,0,260,500,-1
0,54.58,9.415,0,0,13,7,14.415,0,0,11,0,0,30,300,-1
0,34.17,9.17,0,0,0,0,4.5,0,0,12,0,0,0,221,-1
0,28.92,15,0,0,0,1,5.335,0,0,11,1,0,0,2283,-1
0,29.67,1.415,0,0,9,1,0.75,0,0,1,1,0,240,100,-1
0,39.58,13.915,0,0,9,0,8.625,0,0,6,0,0,70,0,-1
0,56.42,28,1,1,0,0,28.5,0,0,40,1,0,0,15,-1
0,54.33,6.75,0,0,0,1,2.625,0,0,11,0,0,0,284,-1
1,41,2.04,1,1,8,1,0.125,0,0,23,0,0,455,1236,-1
0,31.92,4.46,0,0,2,1,6.04,0,0,3,1,0,311,300,-1
0,41.5,1.54,0,0,3,2,3.5,1,1,0,1,0,216,0,-1
0,23.92,0.665,0,0,0,0,0.165,1,1,0,1,0,100,0,-1
1,25.75,0.5,0,0,0,1,0.875,0,1,0,0,0,491,0,-1
0,26,1,0,0,8,0,1.75,0,1,0,0,0,280,0,-1
0,37.42,2.04,0,0,9,0,0.04,0,1,0,0,0,400,5800,-1
0,34.92,2.5,0,0,9,0,0,0,1,0,0,0,239,200,-1
0,34.25,3,0,0,2,1,7.415,0,1,0,0,0,0,0,-1
0,23.33,11.625,1,1,9,0,0.835,0,1,0,0,0,160,300,-1
0,23.17,0,0,0,2,0,0.085,0,1,0,1,0,0,0,-1
0,44.33,0.5,0,0,3,1,5,0,1,0,0,0,320,0,-1
0,35.17,4.5,0,0,10,1,5.75,1,1,0,0,2,711,0,-1
0,43.25,3,0,0,8,1,6,0,0,11,1,0,80,0,-1
0,56.75,12.25,0,0,6,0,1.25,0,0,4,0,0,200,0,-1
0,31.67,16.165,0,0,1,0,3,0,0,9,1,0,250,730,-1
1,23.42,0.79,1,1,8,0,1.5,0,0,2,0,0,80,400,-1
1,20.42,0.835,0,0,8,0,1.585,0,0,1,1,0,0,0,-1
0,26.67,4.25,0,0,2,0,4.29,0,0,1,0,0,120,0,-1
0,34.17,1.54,0,0,2,0,1.54,0,0,1,0,0,520,50000,-1
1,36,1,0,0,0,0,2,0,0,11,1,0,0,456,-1
0,25.5,0.375,0,0,6,0,0.25,0,0,3,1,0,260,15108,-1
0,19.42,6.5,0,0,9,1,1.46,0,0,7,1,0,80,2954,-1
0,35.17,25.125,0,0,10,1,1.625,0,0,1,0,0,515,500,-1
0,32.33,7.5,0,0,11,2,1.585,0,1,0,0,2,420,0,1
1,38.58,5,0,0,2,0,13.5,0,1,0,0,0,980,0,1
0,44.25,0.5,0,0,6,0,10.75,0,1,0,1,2,400,0,1
0,44.83,7,1,1,0,0,1.625,1,1,0,1,0,160,2,1
0,20.67,5.29,0,0,8,0,0.375,0,0,1,1,0,160,0,1
0,34.08,6.5,0,0,12,0,0.125,0,1,0,0,0,443,0,1
1,19.17,0.585,1,1,12,0,0.585,0,1,0,0,0,160,0,1
0,21.67,1.165,1,1,5,0,2.5,0,0,1,1,0,180,20,1
0,21.5,9.75,0,0,0,0,0.25,0,1,0,1,0,140,0,1
0,49.58,19,0,0,13,7,0,0,0,1,1,0,94,0,1
1,27.67,1.5,0,0,6,0,2,0,1,0,1,2,368,0,1
0,39.83,0.5,0,0,6,0,0.25,0,1,0,1,2,288,0,1
0,27.25,0.625,0,0,12,0,0.455,0,1,0,0,0,200,0,1
0,37.17,4,0,0,0,2,5,0,1,0,0,2,280,0,1
0,25.67,2.21,1,1,12,0,4,0,1,0,1,0,188,0,1
0,34,4.5,0,0,12,0,1,0,1,0,0,0,240,0,1
1,49,1.5,0,0,4,3,0,0,1,0,0,0,100,27,1
0,62.5,12.75,1,1,0,1,5,0,1,0,1,0,112,0,1
0,31.42,15.5,0,0,0,0,0.5,0,1,0,1,0,120,0,1
0,52.33,1.375,1,1,0,1,9.46,0,1,0,0,0,200,100,1
0,28.75,1.5,1,1,0,0,1.5,0,1,0,0,0,0,225,1
1,28.58,3.54,0,0,3,2,0.5,0,1,0,0,0,171,0,1
0,23,0.625,1,1,12,0,0.125,0,1,0,1,0,180,1,1
1,22.5,11,1,1,8,0,3,0,1,0,0,0,268,0,1
1,28.5,1,0,0,8,0,1,0,0,2,0,0,167,500,1
0,37.5,1.75,1,1,0,2,0.25,0,1,0,0,0,164,400,1
0,35.25,16.5,1,1,0,0,4,0,1,0,1,0,80,0,1
0,18.67,5,0,0,8,0,0.375,0,0,2,1,0,0,38,1
0,25,12,0,0,5,0,2.25,0,0,2,0,0,120,5,1
0,27.83,4,1,1,3,1,5.75,0,0,2,0,0,75,0,1
0,54.83,15.5,0,0,11,5,0,0,0,20,1,0,152,130,1
0,28.75,1.165,0,0,5,0,0.5,0,1,0,1,2,280,0,1
1,25,11,1,1,12,0,4.5,0,1,0,1,0,120,0,1
0,40.92,2.25,1,1,10,1,10,0,1,0,0,0,176,0,1
1,19.75,0.75,0,0,0,0,0.795,0,0,5,0,0,140,5,1
0,29.17,3.5,0,0,9,0,3.5,0,0,3,0,0,329,0,1
1,24.5,1.04,1,1,13,7,0.5,0,0,3,1,0,180,147,1
0,24.58,12.5,0,0,9,0,0.875,0,1,0,0,0,260,0,1
1,33.75,0.75,0,0,5,2,1,0,0,3,0,0,212,0,1
0,20.67,1.25,1,1,0,1,1.375,0,0,3,0,0,140,210,1
1,25.42,1.125,0,0,8,0,1.29,0,0,2,1,0,200,0,1
0,37.75,7,0,0,8,1,11.5,0,0,7,0,0,300,5,1
0,52.5,6.5,0,0,5,0,6.29,0,0,15,1,0,0,11202,-1
0,57.83,7.04,0,0,6,0,14,0,0,6,0,0,360,1332,-1
1,20.75,10.335,0,0,2,1,0.335,0,0,1,0,0,80,50,-1
0,39.92,6.21,0,0,8,0,0.04,0,0,1,1,0,200,300,-1
0,25.67,12.5,0,0,2,0,1.21,0,0,67,0,0,140,258,-1
1,24.75,12.5,0,0,12,0,1.5,0,0,12,0,0,120,567,-1
1,44.17,6.665,0,0,8,0,7.375,0,0,3,0,0,0,0,-1
1,23.5,9,0,0,8,0,8.5,0,0,5,0,0,120,0,-1
0,34.92,5,0,0,10,1,7.5,0,0,6,0,0,0,1000,-1
0,47.67,2.5,0,0,6,2,2.5,0,0,12,0,0,410,2510,-1
0,22.75,11,0,0,8,0,2.5,0,0,7,0,0,100,809,-1
0,34.42,4.25,0,0,3,2,3.25,0,0,2,1,0,274,610,-1
1,28.42,3.5,0,0,9,0,0.835,0,1,0,1,2,280,0,-1
0,67.75,5.5,0,0,11,5,13,0,0,1,0,0,0,0,-1
0,20.42,1.835,0,0,0,0,2.25,0,0,1,1,0,100,150,-1
1,47.42,8,0,0,11,2,6.5,0,0,6,1,0,375,51100,-1
0,36.25,5,0,0,0,2,2.5,0,0,6,1,0,0,367,-1
0,32.67,5.5,0,0,8,1,5.5,0,0,12,0,0,408,1000,-1
0,48.58,6.5,0,0,8,1,6,0,1,0,0,0,350,0,-1
0,39.92,0.54,1,1,12,0,0.5,0,0,3,1,0,200,1000,-1
0,33.58,2.75,0,0,6,0,4.25,0,0,6,1,0,204,0,-1
1,18.83,9.5,0,0,9,0,1.625,0,0,6,0,0,40,600,-1
1,26.92,13.5,0,0,8,1,5,0,0,2,1,0,0,5000,-1
1,31.25,3.75,0,0,2,1,0.625,0,0,9,0,0,181,0,-1
1,56.5,16,0,0,4,7,0,0,0,15,1,0,0,247,-1
0,43,0.29,1,1,2,1,1.75,0,0,8,1,0,100,375,-1
0,22.33,11,0,0,9,0,2,0,0,1,1,0,80,278,-1
0,27.25,1.665,0,0,2,1,5.085,0,0,9,1,0,399,827,-1
0,32.83,2.5,0,0,2,1,2.75,0,0,6,1,0,160,2072,-1
0,23.25,1.5,0,0,8,0,2.375,0,0,3,0,0,0,582,-1
1,40.33,7.54,1,1,8,1,8,0,0,14,1,0,0,2300,-1
1,30.5,6.5,0,0,0,2,4,0,0,7,0,0,0,3065,-1
1,52.83,15,0,0,0,0,5.5,0,0,14,1,0,0,2200,-1
1,46.67,0.46,0,0,2,1,0.415,0,0,11,0,0,440,6,-1
1,58.33,10,0,0,8,0,4,0,0,14,1,0,0,1602,-1
0,37.33,6.5,0,0,6,1,4.25,0,0,12,0,0,93,0,-1
0,23.08,2.5,0,0,0,0,1.085,0,0,11,0,0,60,2184,-1
0,32.75,1.5,0,0,2,1,5.5,0,0,3,0,0,0,0,-1
1,21.67,11.5,1,1,4,3,0,0,0,11,0,0,0,0,-1
1,28.5,3.04,1,1,10,1,2.54,0,0,1,1,0,70,0,-1
1,68.67,15,0,0,11,5,0,0,0,14,1,0,0,3376,-1
0,28,2,0,0,5,1,4.165,0,0,2,0,0,181,0,-1
0,34.08,0.08,1,1,6,2,0.04,0,0,1,0,0,280,2000,-1
0,27.67,2,0,0,10,1,1,0,0,4,1,0,140,7544,-1
0,44,2,0,0,6,0,1.75,0,0,2,0,0,0,15,-1
0,25.08,1.71,0,0,10,0,1.665,0,0,1,0,0,395,20,-1
0,32,1.75,1,1,11,1,0.04,0,1,0,0,0,393,0,-1
1,60.58,16.5,0,0,8,0,11,0,1,0,0,0,21,10561,-1
1,40.83,10,0,0,8,1,1.75,0,1,0,1,0,29,837,-1
0,19.33,9.5,0,0,8,0,1,0,1,0,0,0,60,400,-1
1,32.33,0.54,0,0,2,0,0.04,0,1,0,1,0,440,11177,-1
0,36.67,3.25,0,0,8,1,9,0,1,0,0,0,102,639,-1
0,37.5,1.125,1,1,1,0,1.5,1,1,0,0,0,431,0,-1
1,25.08,2.54,1,1,12,0,0.25,0,1,0,0,0,370,0,-1
0,41.33,0,0,0,0,2,15,0,1,0,1,0,0,0,-1
0,56,12.5,0,0,5,1,8,0,1,0,0,0,24,2028,-1
1,49.83,13.585,0,0,5,1,8.5,0,1,0,0,0,0,0,-1
0,22.67,10.5,0,0,8,1,1.335,0,1,0,1,0,100,0,-1
0,27,1.5,1,1,9,0,0.375,0,1,0,0,0,260,1065,-1
0,25,12.5,0,0,12,0,3,0,1,0,0,2,20,0,-1
1,26.08,8.665,0,0,12,0,1.415,0,1,0,1,0,160,150,-1
1,18.42,9.25,0,0,8,0,1.21,0,0,4,1,0,60,540,-1
0,20.17,8.17,0,0,12,0,1.96,0,0,14,1,0,60,158,-1
0,47.67,0.29,0,0,0,2,15,0,0,20,1,0,0,15000,-1
1,21.25,2.335,0,0,3,2,0.5,0,0,4,1,2,80,0,-1
1,20.67,3,0,0,8,0,0.165,0,0,3,1,0,100,6,-1
1,57.08,19.5,0,0,0,0,5.5,0,0,7,1,0,0,3000,-1
1,22.42,5.665,0,0,8,0,2.585,0,0,7,1,0,129,3257,-1
0,48.75,8.5,0,0,0,1,12.5,0,0,9,1,0,181,1655,-1
0,40,6.5,0,0,12,2,3.5,0,0,1,1,0,0,500,-1
0,40.58,5,0,0,0,0,5,0,0,7,1,0,0,3065,-1
1,28.67,1.04,0,0,0,0,2.5,0,0,5,0,0,300,1430,-1
1,33.08,4.625,0,0,8,1,1.625,0,0,2,1,0,0,0,-1
0,21.33,10.5,0,0,0,0,3,0,1,0,0,0,0,0,-1
0,42,0.205,0,0,3,1,5.125,0,1,0,1,0,400,0,-1
0,41.75,0.96,0,0,10,0,2.5,0,1,0,1,0,510,600,-1
0,22.67,1.585,1,1,9,0,3.085,0,0,6,1,0,80,0,-1
0,34.5,4.04,1,1,3,2,8.5,0,0,7,0,0,195,0,-1
0,28.25,5.04,1,1,0,2,1.5,0,0,8,0,0,144,7,-1
0,33.17,3.165,1,1,10,0,3.165,0,0,3,0,0,380,0,-1
0,48.17,7.625,0,0,9,1,15.5,0,0,12,1,0,0,790,-1
0,27.58,2.04,1,1,12,0,2,0,0,3,0,0,370,560,-1
0,22.58,10.04,0,0,10,0,0.04,0,0,9,1,0,60,396,-1
1,24.08,0.5,0,0,8,1,1.25,0,0,1,1,0,0,678,-1
1,41.33,1,0,0,3,2,2.25,0,1,0,0,0,0,300,-1
1,20.75,10.25,0,0,8,0,0.71,0,0,2,0,0,49,0,-1
0,36.33,2.125,1,1,9,0,0.085,0,0,1,1,0,50,1187,-1
1,35.42,12,0,0,8,1,14,0,0,8,1,0,0,6590,-1
0,28.67,9.335,0,0,8,1,5.665,0,0,6,1,0,381,168,-1
0,35.17,2.5,0,0,5,0,4.5,0,0,7,1,0,150,1270,-1
0,39.5,4.25,0,0,0,2,6.5,0,0,16,1,0,117,1210,-1
0,39.33,5.875,0,0,2,1,10,0,0,14,0,0,399,0,-1
0,24.33,6.625,1,1,1,0,5.5,0,1,0,0,2,100,0,-1
0,60.08,14.5,0,0,13,7,18,0,0,15,0,0,0,1000,-1
0,23.08,11.5,0,0,3,0,3.5,0,0,9,1,0,56,742,-1
0,26.67,2.71,1,1,2,0,5.25,0,0,1,1,0,211,0,-1
0,48.17,3.5,0,0,12,0,3.5,0,1,0,1,2,230,0,-1
0,41.17,4.04,0,0,2,1,7,0,0,8,1,0,320,0,-1
0,55.92,11.5,0,0,13,7,5,0,0,5,1,0,0,8851,-1
0,53.92,9.625,0,0,11,0,8.665,0,0,5,1,0,0,0,-1
1,18.92,9.25,1,1,0,0,1,0,0,4,0,0,80,500,-1
1,50.08,12.54,0,0,12,0,2.29,0,0,3,0,0,156,0,-1
0,65.42,11,0,0,11,5,20,0,0,7,0,0,22,0,-1
1,17.58,9,0,0,12,0,1.375,0,1,0,0,0,0,0,-1
1,18.83,9.54,0,0,12,0,0.085,0,1,0,1,0,100,0,-1
1,37.75,5.5,0,0,8,0,0.125,0,1,0,0,0,228,0,-1
0,23.25,4,0,0,0,2,0.25,0,1,0,0,0,160,0,-1
0,18.08,5.5,0,0,5,0,0.5,0,1,0,1,0,80,0,-1
1,22.5,8.46,1,1,10,0,2.46,1,1,0,1,0,164,0,-1
0,19.67,0.375,0,0,8,0,2,0,0,2,0,0,80,0,-1
0,22.08,11,0,0,2,0,0.665,0,1,0,1,0,100,0,-1
0,25.17,3.5,0,0,2,0,0.625,0,0,7,1,0,0,7059,-1
1,47.42,3,0,0,10,0,13.875,0,0,2,0,0,519,1704,-1
0,33.5,1.75,0,0,10,1,4.5,0,0,4,0,0,253,857,-1
0,27.67,13.75,0,0,9,0,5.75,0,1,0,0,0,487,500,-1
1,58.42,21,0,0,3,2,10,0,0,13,1,0,0,6700,-1
1,20.67,1.835,0,0,8,0,2.085,0,0,5,1,0,220,2503,-1
0,26.17,0.25,0,0,3,2,0,0,1,0,0,0,0,0,-1
0,21.33,7.5,0,0,12,0,1.415,0,0,1,1,0,80,9800,-1
0,42.83,4.625,0,0,8,0,4.58,0,1,0,1,2,0,0,-1
0,38.17,10.125,0,0,10,0,2.5,0,0,6,1,0,520,196,-1
0,20.5,10,1,1,0,0,2.5,0,1,0,1,2,40,0,-1
0,48.25,25.085,0,0,9,0,1.75,0,0,3,1,0,120,14,-1
0,28.33,5,0,0,9,0,11,0,1,0,0,0,70,0,-1
0,18.5,2,0,0,3,0,1.5,0,0,2,1,0,120,300,-1
0,33.17,3.04,1,1,0,1,2.04,0,0,1,0,0,180,18027,-1
0,45,8.5,0,0,2,1,14,0,0,1,0,0,88,2000,-1
1,19.67,0.21,0,0,8,1,0.29,0,0,11,1,0,80,99,-1
0,21.83,11,0,0,10,0,0.29,0,0,6,1,0,121,0,-1
0,40.25,21.5,0,0,11,5,20,0,0,11,1,0,0,1200,-1
0,41.42,5,0,0,8,1,5,0,0,6,0,0,470,0,-1
1,17.83,11,0,0,10,1,1,0,0,11,1,0,0,3000,-1
0,23.17,11.125,0,0,10,1,0.46,0,0,1,1,0,100,0,-1
0,18.17,10.25,0,0,0,1,1.085,1,1,0,1,0,320,13,1
0,20,11.045,0,0,0,0,2,1,1,0,0,0,136,0,1
0,20,0,0,0,1,0,0.5,1,1,0,1,0,144,0,1
1,20.75,9.54,0,0,3,0,0.04,1,1,0,1,0,200,1000,1
1,24.5,1.75,1,1,0,0,0.165,1,1,0,1,0,132,0,1
0,32.75,2.335,0,0,1,1,5.75,1,1,0,0,0,292,0,1
1,52.17,0,1,1,13,7,0,1,1,0,1,0,0,0,1
1,48.17,1.335,0,0,3,8,0.335,1,1,0,1,0,0,120,1
1,20.42,10.5,1,1,10,1,0,1,1,0,0,0,154,32,1
0,50.75,0.585,0,0,13,7,0,1,1,0,1,0,145,0,1
0,17.08,0.085,1,1,0,0,0.04,1,1,0,1,0,140,722,1
0,18.33,1.21,1,1,11,6,0,1,1,0,1,0,100,0,1
1,32,6,0,0,1,0,1.25,1,1,0,1,0,272,0,1
0,59.67,1.54,0,0,8,0,0.125,0,1,0,0,0,260,0,-1
0,18,0.165,0,0,8,4,0.21,1,1,0,1,0,200,40,-1
0,32.33,2.5,0,0,0,0,1.25,1,1,0,0,0,280,0,1
0,18.08,6.75,1,1,6,0,0.04,1,1,0,1,0,140,0,1
0,38.25,10.125,1,1,5,0,0.125,1,1,0,1,0,160,0,1
0,30.67,2.5,0,0,2,1,2.25,1,1,0,0,2,340,0,1
0,18.58,5.71,0,0,1,0,0.54,1,1,0,1,0,120,0,1
1,19.17,5.415,0,0,3,1,0.29,1,1,0,1,0,80,484,1
1,18.17,10,1,1,8,1,0.165,1,1,0,1,0,340,0,1
0,16.25,0.835,0,0,6,0,0.085,0,1,0,1,2,200,0,1
0,21.17,0.875,1,1,0,1,0.25,1,1,0,1,0,280,204,1
0,23.92,0.585,1,1,2,1,0.125,1,1,0,1,0,240,1,1
0,17.67,4.46,0,0,0,0,0.25,1,1,0,1,2,80,0,1
1,16.5,1.25,0,0,8,0,0.25,1,0,1,1,0,108,98,1
0,23.25,12.625,0,0,0,0,0.125,1,0,2,1,0,0,5552,1
0,17.58,10,0,0,9,1,0.165,1,0,1,1,0,120,1,1
0,29.5,0.58,0,0,9,0,0.29,1,0,1,1,0,340,2803,1
0,18.83,0.415,1,1,0,0,0.165,1,0,1,1,0,200,1,1
1,21.75,1.75,1,1,4,3,0,1,1,0,1,0,160,0,1
0,23,0.75,0,0,6,0,0.5,1,1,0,0,2,320,0,1
1,18.25,10,0,0,9,0,1,1,0,1,1,0,120,1,1
0,25.42,0.54,0,0,9,0,0.165,1,0,1,1,0,272,444,1
0,35.75,2.415,0,0,9,0,0.125,1,0,2,1,0,220,1,1
1,16.08,0.335,0,0,13,7,0,1,0,1,1,0,160,126,1
1,31.92,3.125,0,0,13,7,3.04,1,0,2,0,0,200,4,1
0,69.17,9,0,0,13,7,4,1,0,1,1,0,70,6,1
0,32.92,2.5,0,0,12,0,1.75,1,0,2,0,0,720,0,1
0,16.33,2.75,0,0,12,0,0.665,1,0,1,1,0,80,21,1
0,22.17,12.125,0,0,0,0,3.335,1,0,2,0,0,180,173,1
1,57.58,2,0,0,13,7,6.5,1,0,1,1,0,0,10,1
0,18.25,0.165,0,0,1,0,0.25,1,1,0,0,2,280,0,1
0,23.42,1,0,0,0,0,0.5,1,1,0,0,2,280,0,1
1,15.92,2.875,0,0,8,0,0.085,1,1,0,1,0,120,0,1
1,24.75,13.665,0,0,8,1,1.5,1,1,0,1,0,280,1,1
0,48.75,26.335,1,1,13,7,0,0,1,0,0,0,0,0,1
0,23.5,2.75,0,0,13,7,4.5,1,1,0,1,0,160,25,1
0,18.58,10.29,0,0,13,7,0.415,1,1,0,1,0,80,0,1
0,27.75,1.29,0,0,5,1,0.25,1,1,0,0,2,140,0,1
1,31.75,3,1,1,4,3,0,1,1,0,1,0,160,20,1
1,24.83,4.5,0,0,9,0,1,1,1,0,0,0,360,6,1
0,19,1.75,1,1,0,0,2.335,1,1,0,0,0,112,6,1
1,16.33,0.21,0,0,12,0,0.125,1,1,0,1,0,200,1,1
1,18.58,10,0,0,1,0,0.415,1,1,0,1,0,80,42,1
0,16.25,0,1,1,12,0,0.25,1,1,0,1,0,60,0,1
0,23,0.75,0,0,6,0,0.5,0,1,0,0,2,320,0,1
0,21.17,0.25,1,1,0,1,0.25,1,1,0,1,0,280,204,1
0,17.5,22,2,2,13,8,0,1,1,0,0,1,450,1e+005,-1
0,19.17,0,1,1,6,2,0,1,1,0,0,2,500,1,-1
0,36.75,0.125,1,1,0,0,1.5,1,1,0,0,0,232,113,-1
0,21.25,1.5,0,0,9,0,1.5,1,1,0,1,0,150,8,-1
1,18.08,0.375,2,2,2,7,10,1,1,0,0,2,300,0,-1
1,33.67,0.375,0,0,2,0,0.375,1,1,0,1,0,300,44,-1
0,48.58,0.205,1,1,5,0,0.25,0,0,11,1,0,380,2732,-1
0,33.67,1.25,0,0,9,0,1.165,1,1,0,1,0,120,0,1
1,29.5,1.085,1,1,10,0,1,1,1,0,1,0,280,13,1
0,30.17,1.085,1,1,0,0,0.04,1,1,0,1,0,170,179,1
0,34.83,2.5,1,1,9,0,3,1,1,0,1,2,200,0,1
1,33.25,2.5,1,1,0,0,2.5,1,1,0,0,0,0,2,1
0,34.08,2.5,0,0,0,0,1,1,1,0,1,0,460,16,1
1,25.25,12.5,0,0,1,0,1,1,1,0,0,0,180,1062,1
0,34.75,2.5,0,0,2,2,0.5,1,1,0,1,0,348,0,1
0,27.67,0.75,0,0,8,1,0.165,1,1,0,0,0,220,251,1
0,47.33,6.5,0,0,0,0,1,1,1,0,0,0,0,228,1
1,34.83,1.25,1,1,3,1,0.5,1,1,0,0,0,160,0,1
1,33.25,3,1,1,12,0,2,1,1,0,1,0,180,0,1
0,28,3,0,0,9,0,0.75,1,1,0,0,0,300,67,1
1,39.08,4,0,0,0,0,3,1,1,0,1,0,480,0,1
0,42.75,4.085,0,0,12,0,0.04,1,1,0,1,0,108,100,1
0,26.92,2.25,0,0,3,2,0.5,1,1,0,0,0,640,4000,1
0,33.75,2.75,0,0,3,2,0,1,1,0,1,0,180,0,1
0,38.92,1.75,0,0,5,0,0.5,1,1,0,0,0,300,2,1
0,62.75,7,0,0,11,5,0,1,1,0,1,0,0,12,1
0,26.75,4.5,1,1,0,2,2.5,1,1,0,1,0,200,1210,1
0,63.33,0.54,0,0,0,0,0.585,0,0,3,0,0,180,0,1
0,27.83,1.5,0,0,9,0,2.25,1,0,1,0,0,100,3,1
1,26.17,2,0,0,4,3,0,1,1,0,0,0,276,1,1
0,22.17,0.585,1,1,13,7,0,1,1,0,1,0,100,0,1
0,22.5,11.5,1,1,6,0,1.5,1,1,0,0,0,0,4000,1
0,30.75,1.585,0,0,1,0,0.585,1,1,0,0,2,0,0,1
0,36.67,2,0,0,3,0,0.25,1,1,0,0,0,221,0,1
1,16,0.165,0,0,12,0,1,1,0,2,0,0,320,1,1
0,41.17,1.335,0,0,1,0,0.165,1,1,0,1,0,168,0,1
1,19.5,0.165,0,0,8,0,0.04,1,1,0,0,0,380,0,1
0,32.42,3,0,0,1,0,0.165,1,1,0,0,0,120,0,1
1,36.75,4.71,0,0,13,7,0,1,1,0,1,0,160,0,1
1,30.25,5.5,0,0,5,0,5.5,1,1,0,0,2,100,0,1
0,23.08,2.5,0,0,13,7,0.085,1,1,0,0,0,100,4208,1
0,26.83,0.54,0,0,5,7,0,1,1,0,1,0,100,0,1
0,16.92,0.335,1,1,5,0,0.29,1,1,0,1,2,200,0,1
0,24.42,2,0,0,11,6,0.165,1,0,2,1,0,320,1300,1
0,42.83,1.25,0,0,6,0,13.875,1,0,1,0,0,352,112,1
1,22.75,6.165,0,0,12,0,0.165,1,1,0,1,0,220,1000,1
0,39.42,1.71,1,1,6,0,0.165,1,1,0,1,2,400,0,1
1,23.58,11.5,1,1,5,1,3,1,1,0,0,0,20,16,1
0,21.42,0.75,1,1,7,4,0.75,1,1,0,0,0,132,2,1
0,33,2.5,1,1,9,0,7,1,1,0,0,0,280,0,1
0,26.33,13,0,0,11,6,0,1,1,0,0,0,140,1110,1
1,45,4.585,0,0,5,1,1,1,1,0,0,2,240,0,1
0,26.25,1.54,0,0,9,0,0.125,1,1,0,1,0,100,0,1
1,20.83,0.5,1,1,11,6,1,1,1,0,1,0,260,0,1
0,28.67,14.5,0,0,1,0,0.125,1,1,0,1,0,0,286,1
0,20.67,0.835,1,1,0,0,2,1,1,0,0,2,240,0,1
0,34.42,1.335,0,0,3,2,0.125,1,1,0,0,0,440,4500,1
0,33.58,0.25,0,0,3,2,4,1,1,0,0,2,420,0,1
0,43.17,5,0,0,3,2,2.25,1,1,0,0,0,141,0,1
1,22.67,7,0,0,0,0,0.165,1,1,0,1,0,160,0,1
1,24.33,2.5,1,1,3,2,4.5,1,1,0,1,0,200,456,1
1,56.83,4.25,1,1,13,7,5,1,1,0,0,0,0,4,1
0,22.08,11.46,0,0,5,0,1.585,1,1,0,0,0,100,1212,1
0,34,5.5,1,1,0,0,1.5,1,1,0,0,0,60,0,1
0,22.58,1.5,1,1,12,0,0.54,1,1,0,0,0,120,67,1
0,21.17,0,0,0,0,0,0.5,1,1,0,0,2,0,0,1
0,26.67,14.585,0,0,3,2,0,1,1,0,0,0,178,0,1
0,22.92,0.17,0,0,6,0,0.085,1,1,0,1,2,0,0,1
0,15.17,7,0,0,11,0,1,1,1,0,1,0,600,0,1
0,39.92,5,0,0,3,2,0.21,1,1,0,1,0,550,0,1
0,27.42,12.5,0,0,12,2,0.25,1,1,0,0,0,720,0,1
0,24.75,0.54,0,0,6,0,1,1,1,0,0,0,120,1,1
0,41.17,1.25,1,1,9,0,0.25,1,1,0,1,0,0,195,1
1,33.08,1.625,0,0,1,0,0.54,1,1,0,0,0,0,0,1
0,29.83,2.04,1,1,10,1,0.04,1,1,0,1,0,128,1,1
1,23.58,0.585,1,1,13,7,0.125,1,1,0,1,0,120,87,1
0,26.17,12.5,1,1,5,1,1.25,1,1,0,0,0,0,17,1
0,31,2.085,0,0,0,0,0.085,1,1,0,1,0,300,0,1
0,20.75,5.085,1,1,4,0,0.29,1,1,0,1,0,140,184,1
0,28.92,0.375,0,0,0,0,0.29,1,1,0,1,0,220,140,1
1,51.92,6.5,0,0,3,2,3.085,1,1,0,0,0,73,0,1
1,22.67,0.335,0,0,8,0,0.75,1,1,0,1,2,160,0,1
0,34,5.085,1,1,3,2,1.085,1,1,0,0,0,480,0,1
1,69.5,6,0,0,13,7,0,1,1,0,1,2,0,0,1
1,19.58,0.665,1,1,0,0,1,1,0,1,1,0,2000,2,1
0,16,3.125,0,0,9,0,0.085,1,0,1,1,0,0,6,1
0,17.08,0.25,0,0,8,0,0.335,1,0,4,1,0,160,8,1
0,31.25,2.835,0,0,13,7,0,1,0,5,1,0,176,146,1
0,25.17,3,0,0,0,0,1.25,1,0,1,1,0,0,22,1
1,22.67,0.79,0,0,3,0,0.085,1,1,0,1,0,144,0,1
0,40.58,1.5,0,0,3,2,0,1,1,0,1,2,300,0,1
0,22.25,0.46,0,0,5,0,0.125,1,1,0,0,0,280,55,1
1,22.25,1.25,1,1,13,7,3.25,1,1,0,1,0,280,0,1
0,22.5,0.125,1,1,5,0,0.125,1,1,0,1,0,200,70,1
0,23.58,1.79,0,0,0,0,0.54,1,1,0,0,0,136,1,1
0,38.42,0.705,0,0,0,0,0.375,1,0,2,1,0,225,500,1
1,26.58,2.54,1,1,13,7,0,1,1,0,0,0,180,60,1
0,35,2.5,0,0,3,0,1,1,1,0,0,0,210,0,1
0,20.42,1.085,0,0,8,0,1.5,1,1,0,1,0,108,7,1
0,29.42,1.25,0,0,9,0,1.75,1,1,0,1,0,200,0,1
0,26.17,0.835,0,0,2,0,1.165,1,1,0,1,0,100,0,1
0,33.67,2.165,0,0,0,0,1.5,1,1,0,1,1,120,0,1
0,24.58,1.25,0,0,0,0,0.25,1,1,0,1,0,110,0,1
1,27.67,2.04,0,0,9,0,0.25,1,1,0,0,0,180,50,1
0,37.5,0.835,0,0,11,0,0.04,1,1,0,1,0,120,5,1
0,49.17,2.29,0,0,13,7,0.29,1,1,0,1,0,200,3,1
0,33.58,0.335,1,1,2,0,0.085,1,1,0,1,0,180,0,1
0,51.83,3,1,1,13,7,1.5,1,1,0,1,0,180,4,1
0,22.92,3.165,1,1,0,0,0.165,1,1,0,1,0,160,1058,1
0,21.83,1.54,0,0,5,0,0.085,1,1,0,0,0,356,0,1
0,25.25,1,0,0,12,0,0.5,1,1,0,1,0,200,0,1
0,58.58,2.71,0,0,0,0,2.415,1,1,0,0,0,320,0,1
0,19,0,1,1,13,7,0,1,0,4,1,0,45,1,1
0,19.58,0.585,0,0,13,7,0,1,0,3,1,0,350,769,1
1,53.33,0.165,0,0,13,7,0,1,1,0,0,2,62,27,1
1,27.17,1.25,0,0,13,7,0,1,0,1,1,0,92,300,1
0,25.92,0.875,0,0,5,0,0.375,1,0,2,0,0,174,3,1
0,23.08,0,0,0,5,0,1,1,0,11,1,2,0,0,1
0,39.58,5,0,0,13,7,0,1,0,2,1,0,17,1,1
0,30.58,2.71,1,1,6,0,0.125,1,1,0,0,2,80,0,1
0,17.25,3,0,0,5,0,0.04,1,1,0,0,0,160,40,1
1,17.67,0,1,1,4,7,0,1,1,0,1,0,86,0,1
0,16.5,0.125,0,0,0,0,0.165,1,1,0,1,0,132,0,1
1,27.33,1.665,0,0,13,7,0,1,1,0,1,0,340,1,1
0,31.25,1.125,0,0,13,7,0,1,0,1,1,0,96,19,1
0,20,7,0,0,0,0,0.5,1,1,0,1,0,0,0,1
0,39.5,1.625,0,0,0,0,1.5,1,1,0,1,0,0,316,1
0,36.5,4.25,0,0,8,0,3.5,1,1,0,1,0,454,50,1
0,52.42,1.5,0,0,1,0,3.75,1,1,0,0,0,0,350,1
0,36.17,18.125,0,0,9,0,0.085,1,1,0,1,0,320,3552,1
0,29.67,0.75,1,1,0,0,0.04,1,1,0,1,0,240,0,1
0,36.17,5.5,0,0,3,2,5,1,1,0,1,0,210,687,1
0,25.67,0.29,1,1,0,0,1.5,1,1,0,0,0,160,0,1
1,24.5,2.415,1,1,0,0,0,1,1,0,1,0,120,0,1
0,24.08,0.875,0,0,6,0,0.085,1,0,4,1,0,254,1950,1
0,21.92,0.5,0,0,0,0,0.125,1,1,0,1,0,360,0,1
1,36.58,0.29,0,0,13,7,0,1,0,10,1,0,200,18,1
1,23,1.835,0,0,4,3,0,1,0,1,1,0,200,53,1
1,27.58,3,0,0,6,0,2.79,1,0,1,0,0,280,10,1
0,31.08,3.085,0,0,0,0,2.5,1,0,2,0,0,160,41,1
1,30.42,1.375,0,0,9,1,0.04,1,0,3,1,0,0,33,1
0,22.08,2.335,0,0,5,0,0.75,1,1,0,1,0,180,0,1
0,16.33,4.085,0,0,3,1,0.415,1,1,0,0,0,120,0,1
1,21.92,11.665,0,0,5,1,0.085,1,1,0,1,0,320,5,1
0,21.08,4.125,1,1,3,1,0.04,1,1,0,1,0,140,100,1
0,17.42,6.5,0,0,3,0,0.125,1,1,0,1,0,60,100,1
0,19.17,4,1,1,3,0,1,1,1,0,0,0,360,1000,1
0,20.67,0.415,0,0,0,0,0.125,1,1,0,1,0,0,44,1
0,26.75,2,0,0,1,0,0.75,1,1,0,0,0,80,0,1
0,23.58,0.835,0,0,3,1,0.085,1,1,0,0,0,220,5,1
0,39.17,2.5,1,1,3,1,10,1,1,0,0,2,200,0,1
0,22.75,11.5,0,0,3,0,0.415,1,1,0,1,0,0,0,1
1,16.92,0.5,0,0,3,0,0.165,1,0,6,0,0,240,35,1
0,23.5,3.165,1,1,5,0,0.415,1,0,1,0,0,280,80,1
1,17.33,9.5,0,0,12,0,1.75,1,0,10,0,0,0,10,1
0,23.75,0.415,1,1,0,0,0.04,1,0,2,1,0,128,6,1
0,34.67,1.08,0,0,6,0,1.165,1,1,0,1,2,28,0,1
0,74.83,19,1,1,13,7,0.04,1,0,2,1,0,0,351,1
0,28.17,0.125,1,1,5,0,0.085,1,1,0,1,0,216,2100,1
0,24.5,13.335,1,1,12,0,0.04,1,1,0,0,0,120,475,1
0,18.83,3.54,1,1,13,7,0,1,1,0,0,0,180,1,1
1,47.25,0.75,0,0,8,1,2.75,0,0,1,1,0,333,892,-1
0,24.17,0.875,0,0,8,0,4.625,0,0,2,0,0,520,2000,-1
0,39.25,9.5,0,0,6,0,6.5,0,0,14,1,0,240,4607,-1
1,20.5,11.835,0,0,0,1,6,0,1,0,1,0,340,0,-1
1,18.83,4.415,1,1,0,1,3,0,1,0,1,0,240,0,-1
0,19.17,9.5,0,0,9,0,1.5,0,1,0,1,0,120,2206,-1
1,25,0.875,0,0,10,1,1.04,0,1,0,0,0,160,5860,-1
0,20.17,9.25,0,0,0,0,1.665,0,0,3,0,0,40,28,-1
0,25.75,0.5,0,0,0,0,1.46,0,0,5,0,0,312,0,-1
0,20.42,7,0,0,0,0,1.625,0,0,3,1,0,200,1391,-1
0,39,5,0,0,2,0,3.5,0,0,10,0,0,0,0,-1
1,64.08,0.165,0,0,13,7,0,0,0,1,1,0,232,100,-1
0,28.25,5.125,0,0,10,0,4.75,0,0,2,1,0,420,7,-1
1,28.75,3.75,0,0,0,0,1.085,0,0,1,0,0,371,0,-1
0,31.33,19.5,0,0,0,0,7,0,0,16,1,0,0,5000,-1
1,18.92,9,0,0,12,0,0.75,0,0,2,1,0,88,591,-1
1,24.75,3,0,0,8,1,1.835,0,0,19,1,0,0,500,-1
1,30.67,12,0,0,0,0,2,0,0,1,1,0,220,19,-1
0,21,4.79,1,1,9,0,2.25,0,0,1,0,0,80,300,-1
0,13.75,4,1,1,9,0,1.75,0,0,2,0,0,120,1000,-1
1,46,4,0,0,4,3,0,0,1,0,1,0,100,960,-1
1,44.33,0,0,0,0,0,2.5,0,1,0,1,0,0,0,-1
0,20.25,9.96,0,0,11,6,0,0,1,0,1,0,0,0,-1
0,22.67,2.54,1,1,0,1,2.585,0,1,0,1,0,0,0,-1
1,60.92,5,0,0,12,0,4,0,0,4,1,0,0,99,-1
0,16.08,0.75,0,0,0,0,1.75,0,0,5,0,0,352,690,-1
1,28.17,0.375,0,0,8,0,0.585,0,0,4,1,0,80,0,-1
0,39.17,1.71,0,0,10,0,0.125,0,0,5,0,0,480,0,-1
1,30,5.29,0,0,11,6,2.25,0,0,5,0,0,99,500,-1
0,22.83,3,0,0,6,0,1.29,0,0,1,1,0,260,800,-1
1,22.5,8.5,0,0,8,0,1.75,0,0,10,1,0,80,990,1
1,28.58,1.665,0,0,8,0,2.415,0,1,0,0,0,440,0,1
0,45.17,1.5,0,0,0,0,2.5,0,1,0,0,0,140,0,1
0,41.58,1.75,0,0,5,0,0.21,0,1,0,1,0,160,0,1
1,57.08,0.335,0,0,3,2,1,0,1,0,0,0,252,2197,1
1,55.75,7.08,0,0,5,1,6.75,0,0,3,0,0,100,50,1
0,43.25,25.21,0,0,8,1,0.21,0,0,1,1,0,760,90,1
1,25.33,2.085,0,0,0,1,2.75,0,1,0,0,0,360,1,1
1,24.58,0.67,0,0,12,1,1.75,0,1,0,1,0,400,0,1
0,43.17,2.25,0,0,3,2,0.75,0,1,0,1,0,560,0,1
0,40.92,0.835,0,0,13,7,0,0,1,0,1,0,130,1,1
0,31.83,2.5,0,0,12,0,7.5,0,1,0,0,0,523,0,1
1,33.92,1.585,1,1,13,7,0,0,1,0,1,0,320,0,1
1,24.92,1.25,0,0,13,7,0,0,1,0,1,0,80,0,1
0,35.25,3.165,0,0,10,1,3.75,0,1,0,0,0,680,0,1
0,34.25,1.75,0,0,9,2,0.25,0,1,0,0,0,163,0,1
0,19.42,1.5,1,1,2,0,2,0,1,0,0,0,100,20,1
0,42.75,3,0,0,3,2,1,0,1,0,1,0,0,200,1
0,19.67,10,1,1,5,1,0.835,0,1,0,0,0,140,0,1
0,36.33,3.79,0,0,9,0,1.165,0,1,0,0,0,200,0,1
0,30.08,1.04,1,1,3,2,0.5,0,0,10,0,0,132,28,1
0,44.25,11,1,1,1,0,1.5,0,1,0,1,2,0,0,1
0,23.58,0.46,1,1,9,0,2.625,0,0,6,0,0,208,347,1
0,23.92,1.5,0,0,1,1,1.875,0,0,6,1,0,200,327,-1
0,33.17,1,0,0,10,0,0.75,0,0,7,0,0,340,4071,-1
0,48.33,12,0,0,6,0,16,0,1,0,1,2,110,0,-1
0,76.75,22.29,0,0,11,5,12.75,0,0,1,0,0,0,109,-1
0,51.33,10,0,0,3,2,0,0,0,11,1,0,0,1249,-1
0,34.75,15,0,0,7,4,5.375,0,0,9,0,0,0,134,-1
0,38.58,3.335,0,0,9,0,4,0,0,14,1,0,383,1344,-1
1,22.42,11.25,1,1,10,1,0.75,0,0,4,1,0,0,321,-1
0,41.92,0.42,0,0,0,1,0.21,0,0,6,1,0,220,948,-1
0,29.58,4.5,0,0,9,0,7.5,0,0,2,0,0,330,0,-1
1,32.17,1.46,0,0,9,0,1.085,0,0,16,1,0,120,2079,-1
0,51.42,0.04,0,0,10,1,0.04,0,1,0,1,0,0,3000,-1
1,22.83,2.29,0,0,8,1,2.29,0,0,7,0,0,140,2384,-1
1,25,12.33,0,0,2,1,3.5,0,0,6,1,0,400,458,-1
0,26.75,1.125,0,0,10,1,1.25,0,1,0,1,0,0,5298,-1
0,23.33,1.5,0,0,0,1,1.415,0,1,0,1,0,422,200,-1
0,24.42,12.335,0,0,8,1,1.585,0,1,0,0,0,120,0,-1
0,42.17,5.04,0,0,8,1,12.75,0,1,0,0,0,92,0,-1
1,20.83,3,0,0,12,0,0.04,0,1,0,1,0,100,0,-1
0,23.08,11.5,0,0,9,1,2.125,0,0,11,0,0,290,284,-1
1,25.17,2.875,0,0,10,1,0.875,0,1,0,1,0,360,0,-1
0,43.08,0.375,1,1,0,0,0.375,0,0,8,0,0,300,162,-1
1,35.75,0.915,0,0,12,0,0.75,0,0,4,1,0,0,1583,-1
0,59.5,2.75,0,0,9,0,1.75,0,0,5,0,0,60,58,-1
0,21,3,1,1,1,0,1.085,0,0,8,0,0,160,1,-1
0,21.92,0.54,1,1,10,0,0.04,0,0,1,0,0,840,59,-1
1,65.17,14,0,0,13,7,0,0,0,11,0,0,0,1400,-1
1,20.33,10,0,0,0,1,1,0,0,4,1,0,50,1465,-1
0,32.25,0.165,1,1,0,1,3.25,0,0,1,0,0,432,8000,-1
0,30.17,0.5,0,0,0,0,1.75,0,0,11,1,0,32,540,-1
0,25.17,6,0,0,0,0,1,0,0,3,1,0,0,0,-1
0,39.17,1.625,0,0,0,0,1.5,0,0,10,1,0,186,4700,-1
0,39.08,6,0,0,6,0,1.29,0,0,5,0,0,108,1097,-1
0,31.67,0.83,0,0,10,0,1.335,0,0,8,0,0,303,3290,-1
0,41,0.04,0,0,11,0,0.04,1,0,1,1,2,560,0,-1
0,48.5,4.25,0,0,6,0,0.125,0,1,0,0,0,225,0,-1
0,32.67,9,1,1,9,1,5.25,0,1,0,0,0,154,0,-1
1,28.08,15,1,1,11,5,0,0,1,0,1,0,0,13212,-1
0,73.42,17.75,0,0,13,7,0,0,1,0,0,0,0,0,-1
0,64.08,20,0,0,10,1,17.5,0,0,9,0,0,0,1000,-1
0,51.58,15,0,0,0,0,8.5,0,0,9,1,0,0,0,-1
0,26.67,1.75,1,1,0,0,1,0,0,5,0,0,160,5777,-1
0,25.33,0.58,0,0,0,0,0.29,0,0,7,0,0,96,5124,-1
0,30.17,6.5,0,0,2,0,3.125,0,0,8,1,0,330,1200,-1
0,27,0.75,0,0,0,1,4.25,0,0,3,0,0,312,150,-1
0,34.17,5.25,0,0,9,0,0.085,1,1,0,0,0,290,6,-1
0,38.67,0.21,0,0,5,0,0.085,0,1,0,0,0,280,0,-1
0,25.75,0.75,0,0,0,2,0.25,0,1,0,1,0,349,23,-1
1,46.08,3,0,0,0,0,2.375,0,0,8,0,0,396,4159,-1
1,21.5,6,0,0,12,0,2.5,0,0,3,1,0,80,918,-1
0,20.5,2.415,0,0,0,0,2,0,0,11,0,0,200,3000,-1
1,29.5,0.46,0,0,5,0,0.54,0,0,4,1,0,380,500,-1
0,29.83,1.25,1,1,5,0,0.25,1,1,0,1,0,224,0,1
0,20.08,0.25,0,0,8,0,0.125,1,1,0,1,0,200,0,1
0,23.42,0.585,0,0,0,1,0.085,0,1,0,1,0,180,0,1
1,29.58,1.75,1,1,5,0,1.25,1,1,0,0,0,280,0,1
0,16.17,0.04,0,0,0,0,0.04,1,1,0,1,0,0,0,-1
0,32.33,3.5,0,0,5,0,0.5,1,1,0,0,0,232,0,1
0,47.83,4.165,0,0,10,2,0.085,1,1,0,0,0,520,0,1
0,20,1.25,1,1,5,0,0.125,1,1,0,1,0,140,4,1
0,27.58,3.25,1,1,8,1,5.085,1,0,2,0,0,369,1,1
0,22,0.79,0,0,9,0,0.29,1,0,1,1,0,420,283,1
0,19.33,10.915,0,0,0,2,0.585,1,0,2,0,0,200,7,1
1,38.33,4.415,0,0,0,0,0.125,1,1,0,1,0,160,0,1
0,29.42,1.25,0,0,0,1,0.25,1,0,2,0,0,400,108,1
0,22.67,0.75,0,0,3,0,1.585,1,0,1,0,0,400,9,1
0,32.25,14,1,1,13,7,0,1,0,2,1,0,160,1,1
0,29.58,4.75,0,0,6,0,2,1,0,1,0,0,460,68,1
0,18.42,10.415,1,1,12,0,0.125,0,1,0,1,0,120,375,1
0,22.17,2.25,0,0,3,0,0.125,1,1,0,1,0,160,10,1
0,22.67,0.165,0,0,0,3,2.25,1,1,0,0,2,0,0,-1
0,18.83,0,0,0,8,0,0.665,1,1,0,1,0,160,1,1
0,21.58,0.79,1,1,2,0,0.665,1,1,0,1,0,160,0,1
0,23.75,12,0,0,0,0,2.085,1,1,0,1,2,80,0,1
0,36.08,2.54,0,0,13,7,0,1,1,0,1,0,0,1000,1
0,29.25,13,0,0,1,1,0.5,1,1,0,1,0,228,0,1
1,19.58,0.665,0,0,9,0,1.665,1,1,0,1,0,220,5,1
1,22.92,1.25,0,0,8,0,0.25,1,1,0,0,0,120,809,1
1,27.25,0.29,0,0,6,1,0.125,1,0,1,0,0,272,108,1
1,38.75,1.5,0,0,13,7,0,1,1,0,1,0,76,0,1
0,32.42,2.165,1,1,5,7,0,1,1,0,1,0,120,0,1
1,23.75,0.71,0,0,9,0,0.25,1,0,1,0,0,240,4,1
0,18.17,2.46,0,0,0,4,0.96,1,0,2,0,0,160,587,1
0,40.92,0.5,1,1,6,0,0.5,1,1,0,0,0,130,0,1
0,19.5,9.585,0,0,12,0,0.79,1,1,0,1,0,80,350,1
0,28.58,3.625,0,0,12,0,0.25,1,1,0,0,0,100,0,1
0,35.58,0.75,0,0,5,0,1.5,1,1,0,0,0,231,0,1
0,34.17,2.75,0,0,3,2,2.5,1,1,0,0,0,232,200,1
0,31.58,0.75,1,1,12,0,3.5,1,1,0,0,0,320,0,1
1,52.5,7,0,0,12,1,3,1,1,0,1,0,0,0,1
0,36.17,0.42,1,1,9,0,0.29,1,1,0,0,0,309,2,1
0,37.33,2.665,0,0,2,0,0.165,1,1,0,0,0,0,501,1
1,20.83,8.5,0,0,0,0,0.165,1,1,0,1,0,0,351,1
0,24.08,9,0,0,12,0,0.25,1,1,0,0,0,0,0,1
0,25.58,0.335,0,0,5,1,3.5,1,1,0,0,0,340,0,1
1,35.17,3.75,0,0,13,7,0,1,0,6,1,0,0,200,1
0,48.08,3.75,0,0,3,2,1,1,1,0,1,0,100,2,1
1,15.83,7.625,0,0,8,0,0.125,1,0,1,0,0,0,160,1
1,22.5,0.415,0,0,3,0,0.335,1,1,0,0,2,144,0,1
0,21.5,11.5,0,0,3,0,0.5,0,1,0,0,0,100,68,1
1,23.58,0.83,0,0,8,0,0.415,1,0,1,0,0,200,11,1
1,21.08,5,1,1,13,7,0,1,1,0,1,0,0,0,1
0,25.67,3.25,0,0,0,1,2.29,1,0,1,0,0,416,21,1
1,38.92,1.665,0,0,12,0,0.25,1,1,0,1,0,0,390,1
1,15.75,0.375,0,0,0,0,1,1,1,0,1,0,120,18,1
1,28.58,3.75,0,0,0,0,0.25,1,0,1,0,0,40,154,1
0,22.25,9,0,0,12,0,0.085,1,1,0,1,0,0,0,1
0,29.83,3.5,0,0,0,0,0.165,1,1,0,1,0,216,0,1
1,23.5,1.5,0,0,9,0,0.875,1,1,0,0,0,160,0,1
0,32.08,4,1,1,2,0,1.5,1,1,0,0,0,120,0,1
0,31.08,1.5,1,1,9,0,0.04,1,1,0,1,2,160,0,1
0,31.83,0.04,1,1,6,0,0.04,1,1,0,1,0,0,0,1
1,21.75,11.75,0,0,0,0,0.25,1,1,0,0,0,180,0,1
1,17.92,0.54,0,0,0,0,1.75,1,0,1,0,0,80,5,1
0,30.33,0.5,0,0,1,1,0.085,1,1,0,0,2,252,0,1
0,51.83,2.04,1,1,13,7,1.5,1,1,0,1,0,120,1,1
0,47.17,5.835,0,0,9,0,5.5,1,1,0,1,0,465,150,1
0,25.83,12.835,0,0,2,0,0.5,1,1,0,1,0,0,2,1
1,50.25,0.835,0,0,12,0,0.5,1,1,0,0,0,240,117,1
1,37.33,2.5,0,0,3,1,0.21,1,1,0,1,0,260,246,1
1,41.58,1.04,0,0,12,0,0.665,1,1,0,1,0,240,237,1
1,30.58,10.665,0,0,8,1,0.085,1,0,12,0,0,129,3,1
0,19.42,7.25,0,0,6,0,0.04,1,0,1,1,0,100,1,1
1,17.92,10.21,0,0,13,7,0,1,1,0,1,0,0,50,1
1,20.08,1.25,0,0,0,0,0,1,1,0,1,0,0,0,1
0,19.5,0.29,0,0,5,0,0.29,1,1,0,1,0,280,364,1
0,27.83,1,1,1,1,1,3,1,1,0,1,0,176,537,1
0,17.08,3.29,0,0,3,0,0.335,1,1,0,0,0,140,2,1
0,36.42,0.75,1,1,1,0,0.585,1,1,0,1,0,240,3,1
0,40.58,3.29,0,0,6,0,3.5,1,1,0,0,2,400,0,1
0,21.08,10.085,1,1,11,1,1.25,1,1,0,1,0,260,0,1
1,22.67,0.75,0,0,0,0,2,1,0,2,0,0,200,394,1
1,25.25,13.5,1,1,13,7,2,1,0,1,0,0,200,1,1
0,17.92,0.205,0,0,12,0,0.04,1,1,0,1,0,280,750,1
0,35,3.375,0,0,0,1,8.29,1,1,0,0,0,0,0,1

credit-a.csv



  本人小白一枚,请各位看客多多指教

原文地址:https://www.cnblogs.com/yandashan666/p/12600378.html

时间: 2024-10-09 00:27:29

深度学习之逻辑回归的实现的相关文章

深度学习:逻辑回归

深度学习(Deep Learning)是机器学习(Machine Learning)的一大分支,它试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法. 逻辑回归(Logistic Regression,也译作"对数几率回归")是离散选择法模型之一,属于多重变量分析范畴,是社会学.生物统计学.临床.数量心理学.计量经济学.市场营销等统计实证分析的常用方法. 符号约定 逻辑回归一般用于二分类(Binary Classification)问题中,给定一些输入,输出

深度学习在美团点评推荐平台排序中的应用--学习笔记

写在前面:据说下周就要xxxxxxxx, 吓得本宝宝赶紧找些广告的东西看看 gbdt+lr的模型之前是知道怎么搞的,dnn+lr的模型也是知道的,但是都没有试验过 深度学习在美团点评推荐平台排序中的运用 原创 2017-07-28 潘晖 美团点评技术团队 美团点评作为国内最大的生活服务平台,业务种类涉及食.住.行.玩.乐等领域,致力于让大家吃得更好,活得更好,有数亿用户以及丰富的用户行为.随着业务的飞速发展,美团点评的用户和商户数在快速增长.在这样的背景下,通过对推荐算法的优化,可以更好的给用户

深度学习在美团点评推荐平台排序中的运用

深度学习在美团点评推荐平台排序中的运用 原文地址:https://tech.meituan.com/dl.html 潘晖 美团点评搜索推荐团队 ·2017-07-28 14:33 美团点评作为国内最大的生活服务平台,业务种类涉及食.住.行.玩.乐等领域,致力于让大家吃得更好,活得更好,有数亿用户以及丰富的用户行为.随着业务的飞速发展,美团点评的用户和商户数在快速增长.在这样的背景下,通过对推荐算法的优化,可以更好的给用户提供感兴趣的内容,帮用户更快速方便的找到所求.我们目标是根据用户的兴趣及行为

学习笔记TF042:TF.Learn、分布式Estimator、深度学习Estimator

TF.Learn,TensorFlow重要模块,各种类型深度学习及流行机器学习算法.TensorFlow官方Scikit Flow项目迁移,谷歌员工Illia Polosukhin.唐源发起.Scikit-learn代码风格,帮助数据科学从业者更好.更快适应接受TensorFlow代码.囊括许多TensorFlow代码.设计模式,用户更快搭建机器学习模型实现应用.避免大量代码重复,把精力放在搭建更精确模型.与其他contrib模块无逢结合. 分布式Estimator.Estimator,各种各样

ufldl学习笔记与编程作业:Logistic Regression(逻辑回归)

ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl. 于是最近就开始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/ 有了线性回归的基础再来学

线性回归,逻辑回归的学习(包含最小二乘法及极大似然函数等)

博文参考了以下两位博主的文章:http://blog.csdn.net/lu597203933/article/details/45032607,http://blog.csdn.net/viewcode/article/details/8794401 回归问题的前提: 1) 收集的数据 2) 假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数.然后利用这个模型去预测/分类新的数据. 1. 线性回归 假设 特征 和 结果 都满足线性.即不大于一次方.这个是针对 收集的数据

逻辑回归学习笔记

本讲大纲: 1.局部加权线性回归(locally weighted linear regression) 给定一个数据集,根据x预测y. 最左边的函数为,并不能很好的拟合数据: 中间的加了一个额外的特性,函数为,稍微更好地拟合了数据: 似乎我们增加越多的特性,拟合程度越好:但是增加太多的特性是很危险的,最右边的图是一个五阶的多项式,虽然很好的拟合了给定的数据集,但是这个并不是一个很好的预测函数. 欠拟合(underfitting):很明显有一些没有被模型捕获的结构,比如说最左边的图. 过拟合(o

SparkMLlib学习分类算法之逻辑回归算法

SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693836) 逻辑回归与线性回归类似,但它不属于回归分析家族(主要为二分类),而属于分类家族,差异主要在于变量不同,因此其解法与生成曲线也不尽相同.逻辑回归是无监督学习的一个重要算法,对某些数据与事物的归属(分到哪个类别)及可能性(分到某一类别的概率)进行评估. (二),SparkMLlib逻辑回归应用

分类和逻辑回归(Classification and logistic regression),广义线性模型(Generalized Linear Models) ,生成学习算法(Generative Learning algorithms)

分类和逻辑回归(Classification and logistic regression) http://www.cnblogs.com/czdbest/p/5768467.html 广义线性模型(Generalized Linear Models) http://www.cnblogs.com/czdbest/p/5769326.html 生成学习算法(Generative Learning algorithms) http://www.cnblogs.com/czdbest/p/5771