目标检测中的precision,recall,AP,mAP计算详解

交并比IoU衡量的是两个区域的重叠程度,是两个区域重叠部分面积占二者总面积(重叠部分只计算一次)的比例。如下图,两个矩形框的IoU是交叉面积(中间图片红色部分)与合并面积(右图红色部分)面积之比。

Iou的定义

在目标检测任务中,如果我们模型输出的矩形框与我们人工标注的矩形框的IoU值大于某个阈值时(通常为0.5)即认为我们的模型输出了正确的

精准率与召回率(Precision & Recall)

大雁与飞机

假设现在有这样一个测试集,测试集中的图片只由大雁和飞机两种图片组成,如下图所示: 

假设你的分类系统最终的目的是:能取出测试集中所有飞机的图片,而不是大雁的图片。

现在做如下的定义: 
True positives : 飞机的图片被正确的识别成了飞机。 
True negatives: 大雁的图片没有被识别出来,系统正确地认为它们是大雁。 
False positives: 大雁的图片被错误地识别成了飞机。 
False negatives: 飞机的图片没有被识别出来,系统错误地认为它们是大雁。

假设你的分类系统使用了上述假设识别出了四个结果,如下图所示: 

那么在识别出的这四张照片中: 
True positives : 有三个,画绿色框的飞机。 
False positives: 有一个,画红色框的大雁。

没被识别出来的六张图片中: 
True negatives : 有四个,这四个大雁的图片,系统正确地没有把它们识别成飞机。 
False negatives: 有两个,两个飞机没有被识别出来,系统错误地认为它们是大雁。

Precision 与 Recall

Precision其实就是在识别出来的图片中,True positives所占的比率: 
 
其中的n代表的是(True positives + False positives),也就是系统一共识别出来多少照片 。 
在这一例子中,True positives为3,False positives为1,所以Precision值是 3/(3+1)=0.75。 
意味着在识别出的结果中,飞机的图片占75%。

Recall 是被正确识别出来的飞机个数与测试集中所有飞机的个数的比值: 
 ,通常tp+fntp+fn在目标检测中指groundTruth中的真实目标数量,
Recall的分母是(True positives + False negatives),这两个值的和,可以理解为一共有多少张飞机的照片。 
在这一例子中,True positives为3,False negatives为2,那么Recall值是 3/(3+2)=0.6。 
意味着在所有的飞机图片中,60%的飞机被正确的识别成飞机.。

Precision 和 Recall最早是信息检索中的概念,用来评价一个信息检索系统的优劣。Precision 就是检索出来的条目中(比如:文档、网页等)有多大比例是我们需要的,Recall就是所有我们需要的网页的条目有多大比例被检索出来了。用到目标检测领域,假设我们有一组图片,里面有若干待检测的目标,Precision就代表我们模型检测出来的目标有多打比例是真正的目标物体,Recall就代表所有真实的目标有多大比例被我们的模型检测出来了。

我们如何来计算Precision和Recall的值呢。

目标检测TP,FP, TN, FN含义图释TP, FP, TN,FN

首先我们根据上图的规则计算出TP,FP,TN的值,则Precision,Recall可表示为

PR曲线

我们当然希望检测的结果P越高越好,R也越高越好,但事实上这两者在某些情况下是矛盾的。比如极端情况下,我们只检测出了一个结果,且是准确的,那么Precision就是100%,但是Recall就很低;而如果我们把所有结果都返回,那么必然Recall必然很大,但是Precision很低。

因此在不同的场合中需要自己判断希望P比较高还是R比较高。如果是做实验研究,可以绘制Precision-Recall曲线来帮助分析。

这里我们举一个简单的例子,假设我们的数据集中共有五个待检测的物体,我们的模型给出了10个候选框,我们按照模型给出的置信度由高到低对候选框进行排序。

表格第二列表示该候选框是否预测正确(即是否存在某个待检测的物体与该候选框的iou值大于0.5)第三列和第四列表示以该行所在候选框置信度为阈值时,Precision和Recall的值。我们以表格的第三行为例进行计算:

  

由上表以Recall值为横轴,Precision值为纵轴,我们就可以得到PR曲线。我们会发现,Precision与Recall的值呈现负相关,在局部区域会上下波动。

PR曲线

AP(Average Precision)

顾名思义AP就是平均精准度,简单来说就是对PR曲线上的Precision值求均值。对于pr曲线来说,我们使用积分来进行计算。

在实际应用中,我们并不直接对该PR曲线进行计算,而是对PR曲线进行平滑处理。即对PR曲线上的每个点,Precision的值取该点右侧最大的Precision的值。

PR曲线的平滑处理

用公式来描述就是  。用该公式进行平滑后再用上述公式计算AP的值。

Interplolated AP(Pascal Voc 2008 的AP计算方式)

Pascal VOC 2008中设置IoU的阈值为0.5,如果一个目标被重复检测,则置信度最高的为正样本,另一个为负样本。在平滑处理的PR曲线上,取横轴0-1的10等分点(包括断点共11个点)的Precision的值,计算其平均值为最终AP的值。

Pascal Voc 2008 AP计算方式

在我们的例子里

Area under curve

上述方法有两个缺陷,第一个是使用11个采样点在精度方面会有损失。第二个是,在比较两个AP值较小的模型时,很难体现出两者的差别。所以这种方法在2009年的Pascalvoc之后便不再采用了。在Pascal voc 2010之后,便开始采用这种精度更高的方式。绘制出平滑后的PR曲线后,用积分的方式计算平滑曲线下方的面积作为最终的AP值。

Pascal voc 2010-2012 AP 计算方式

COCO mAP

最新的目标检测相关论文都使用coco数据集来展示自己模型的效果。对于coco数据集来说,使用的也是Interplolated AP的计算方式。与Voc 2008不同的是,为了提高精度,在PR曲线上采样了100个点进行计算。而且Iou的阈值从固定的0.5调整为在 0.5 - 0.95 的区间上每隔0.5计算一次AP的值,取所有结果的平均值作为最终的结果。

比如我们看一下YOLOv3的作者在论文中展示的在coco数据集上的实验结果

我们发现除了AP,还有  ,  等值,这些事代表什么意思呢?

:IoU阈值为0.5时的AP测量值

:IoU阈值为0.75时的测量值

 : 像素面积小于  的目标框的AP测量值

 : 像素面积在之间目标框的测量值

 : 像素面积大于  的目标框的AP测量值

注:通常来说AP是在单个类别下的,mAP是AP值在所有类别下的均值。在这里,在coco的语境下AP便是mAP,这里的AP已经计算了所有类别下的平均值,这里的AP便是mAP。

原文地址:https://www.cnblogs.com/hanhao970620/p/12422473.html

时间: 2024-08-29 18:21:33

目标检测中的precision,recall,AP,mAP计算详解的相关文章

常见的目标检测中的背景建模方法

Author: JW. ZHOU 2014/6/13 最近一直在做前景检测方面的研究,刚开始主要是做一些工程性的应用,为了解决工程方面的问题,下了不少功夫,也看了不少最近国内外的文章.一直想做个总结,拖着拖着,终究却写成这篇极不成功的总结. 背景建模或前景检测的算法主要有: 1. Single Gaussian (单高斯模型) Real-time tracking of the human body 2. 混合高斯模型(Mixture of Gaussian Model) An improved

深度卷积神经网络在目标检测中的进展

作者:travelsea链接:https://zhuanlan.zhihu.com/p/22045213来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 近些年来,深度卷积神经网络(DCNN)在图像分类和识别上取得了很显著的提高.回顾从2014到2016这两年多的时间,先后涌现出了R-CNN,Fast R-CNN, Faster R-CNN, ION, HyperNet, SDP-CRC, YOLO,G-CNN, SSD等越来越快速和准确的目标检测方法. 基于Reg

信息检索的评价指标(Precision, Recall, F-score, MAP)

之前写过一篇blog叫做机器学习实战笔记之非均衡分类问题:http://blog.csdn.net/lu597203933/article/details/38666699其中对Precision和Recall及ROC都有所讲解,其中区别在于Precision,Recall, F-score, MAP主要用于信息检索,而ROC曲线及其度量指标AUC主要用于分类和识别,ROC的详细介绍见上面的blog,这里的Precision.Recall和上篇blog的计算结果其实是一样的,只是这里从检索的角度

目标检测 1 : 目标检测中的Anchor详解

咸鱼了半年,年底了,把这半年做的关于目标的检测的内容总结下. 本文主要有两部分: 目标检测中的边框表示 Anchor相关的问题,R-CNN,SSD,YOLO 中的anchor 目标检测中的边框表示 目标检测中,使用一个矩形的边框来表示.在图像中,可以基于图像坐标系使用多种方式来表示矩形框. 最直接的方式,使用矩形框的左上角和右下角在图像坐标系中的坐标来表示. 使用绝对坐标的\((x_{min},y_{min},x_{max},y_{max})\). 但是这种绝对坐标的表示方式,是以原始图像的像素

STL中的map用法详解

STL中map用法详解 说明:如果你具备一定的C++ template知识,即使你没有接触过STL,这个文章你也应该可能较轻易的看懂.本人水平有限,不当之处,望大家辅正. 一.map概述 map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据处理能力,由于这个特性,它完成有可能在我们处理一对一数据的时候,在编程上提供快速通道.这里说下map内部数据的组织,map内部自建一颗红黑树(一种非严格意义上的平衡二叉树),

CSS中伪类及伪元素用法详解

原文:CSS中伪类及伪元素用法详解 伪类的分类及作用: 注:该表引自W3School教程 伪元素的分类及作用: 接下来让博主通过一些生动的实例(之前的作业或小作品)来说明几种常用伪类的用法和效果,其他的读者可以自己尝试: :active  大致效果为用鼠标点击时,元素增加特效,鼠标松开时,特效消失.多用在按钮的点击上. 写法: 这里id为box的是一div块,在css中首先设置了他的基本样式,下面为加入:active伪类后需要修改的样式. 未点击时: 点击之后: :active.:hover.:

Android中内容观察者的使用---- ContentObserver类详解

  转载请注明出处:http://blog.csdn.net/qinjuning 前言: 工作中,需要开启一个线程大量的查询某个数据库值发送了变化,导致的开销很大,后来在老大的指点下,利用了 ContentObserver完美的解决了该问题,感到很兴奋,做完之后自己也对ContentObserver做下总结. ContentObserver——内容观察者,目的是观察(捕捉)特定Uri引起的数据库的变化,继而做一些相应的处理,它类似于 数据库技术中的触发器(Trigger),当ContentObs

Android Google Map v2详解之:开发环境配置

Android Google Map v2详解之:开发环境配置                                       --转载请注明出处:coder-pig 说在前面: 说到地图定位,现在越来越多的社交app都加入了地图和定位的功能模块,用户很多的时候 也会用到这些东东,比如,到外面吃饭,次次吃饭前都要拍下照片发到朋友圈,定个位,然后发条说说, 炫耀一下自己今天吃了什么高大上的东东,炫耀和攀比心理我懂,不过,一次下班去吃饭,看到一妹子 吃饭,拍照+发朋友圈,足足用了大概20

Jquery遍历筛选数组的几种方法和遍历解析json对象|Map()方法详解

一.Jquery遍历筛选数组 1.jquery grep()筛选遍历数组 $().ready( function(){ var array = [1,2,3,4,5,6,7,8,9]; var filterarray = $.grep(array,function(value){ return value > 5;//筛选出大于5的 }); for(var i=0;i<filterarray.length;i++){ alert(filterarray[i]); } for (key in f