[ DLPytorch ] 循环神经网络进阶&拟合问题&梯度消失与爆炸

循环神经网络进阶

BPTT

反向传播过程中,训练模型通常需要模型参数的梯度。

\[
\frac{\partial L}{\partial \boldsymbol{W}_{qh}}
= \sum_{t=1}^T \text{prod}\left(\frac{\partial L}{\partial \boldsymbol{o}_t}, \frac{\partial \boldsymbol{o}_t}{\partial \boldsymbol{W}_{qh}}\right)
= \sum_{t=1}^T \frac{\partial L}{\partial \boldsymbol{o}_t} \boldsymbol{h}_t^\top.
\]
\[
\begin{aligned}
\frac{\partial L}{\partial \boldsymbol{W}_{hx}}
&= \sum_{t=1}^T \text{prod}\left(\frac{\partial L}{\partial \boldsymbol{h}_t}, \frac{\partial \boldsymbol{h}_t}{\partial \boldsymbol{W}_{hx}}\right)
= \sum_{t=1}^T \frac{\partial L}{\partial \boldsymbol{h}_t} \boldsymbol{x}_t^\top,\\frac{\partial L}{\partial \boldsymbol{W}_{hh}}
&= \sum_{t=1}^T \text{prod}\left(\frac{\partial L}{\partial \boldsymbol{h}_t}, \frac{\partial \boldsymbol{h}_t}{\partial \boldsymbol{W}_{hh}}\right)
= \sum_{t=1}^T \frac{\partial L}{\partial \boldsymbol{h}_t} \boldsymbol{h}_{t-1}^\top.
\end{aligned}
\]

其次,注意到隐藏状态之间也存在依赖关系。也正是这种依赖关系,在训练时需要对状态进行特殊处理。
\[
\frac{\partial L}{\partial \boldsymbol{h}_t}
= \text{prod} (\frac{\partial L}{\partial \boldsymbol{h}_{t+1}}, \frac{\partial \boldsymbol{h}_{t+1}}{\partial \boldsymbol{h}_t}) + \text{prod} (\frac{\partial L}{\partial \boldsymbol{o}_t}, \frac{\partial \boldsymbol{o}_t}{\partial \boldsymbol{h}_t} ) = \boldsymbol{W}_{hh}^\top \frac{\partial L}{\partial \boldsymbol{h}_{t+1}} + \boldsymbol{W}_{qh}^\top \frac{\partial L}{\partial \boldsymbol{o}_t}
\]
当时间步数 \(T\) 较大或者时间步 \(t\) 较小时,目标函数有关隐藏状态的梯度较容易出现衰减和爆炸。

GRU

  • 重置门有助于捕捉时间序列里短期的依赖关系;
  • 更新门有助于捕捉时间序列里长期的依赖关系。
    门控循环单元会计算候选隐藏状态来辅助稍后的隐藏状态计算,将当前时间步重置门的输出与上一时间步隐藏状态做按元素乘法(符号为\(\odot\))。如果重置门中元素值接近0,那么意味着重置对应隐藏状态元素为0,即丢弃上一时间步的隐藏状态。如果元素值接近1,那么表示保留上一时间步的隐藏状态。然后,将按元素乘法的结果与当前时间步的输入连结,再通过含激活函数tanh的全连接层计算出候选隐藏状态。

    更新门可以控制隐藏状态应该如何被包含当前时间步信息的候选隐藏状态所更新,时间步\(t\)的隐藏状态\(\boldsymbol{H}_t \in \mathbb{R}^{n \times h}\)的计算使用当前时间步的更新门\(\boldsymbol{Z}_t\)来对上一时间步的隐藏状态\(\boldsymbol{H}_{t-1}\)和当前时间步的候选隐藏状态\(\tilde{\boldsymbol{H}}_t\)做组合。

LSTM

设置了遗忘门、输入门和输出门。当前时间步记忆细胞\(\boldsymbol{C}_t \in \mathbb{R}^{n \times h}\)的计算组合了上一时间步记忆细胞和当前时间步候选记忆细胞的信息,并通过遗忘门和输入门来控制信息的流动。候选记忆细胞由上一状态与本次输入分别线性计算再组合。
遗忘门控制上一时间步的记忆细胞\(\boldsymbol{C}_{t-1}\)中的信息是否传递到当前时间步,而输入门则控制当前时间步的输入\(\boldsymbol{X}_t\)通过候选记忆细胞\(\tilde{\boldsymbol{C}}_t\)如何流入当前时间步的记忆细胞。
通过输出门来控制从记忆细胞到隐藏状态\(\boldsymbol{H}_t\)

原文地址:https://www.cnblogs.com/recoverableTi/p/12321975.html

时间: 2024-10-09 11:40:59

[ DLPytorch ] 循环神经网络进阶&拟合问题&梯度消失与爆炸的相关文章

【神经网络和深度学习】笔记 - 第五章 深度神经网络学习过程中的梯度消失问题

之前的章节,我们利用一个仅包含一层隐藏层的简单神经网络就在MNIST识别问题上获得了98%左右的准确率.我们于是本能会想到用更多的隐藏层,构建更复杂的神经网络将会为我们带来更好的结果. 就如同在进行图像模式识别的时候,第一层的神经层可以学到边缘特征,第二层的可以学到更复杂的图形特征,例如三角形,长方形等,第三层又会识别更加复杂的图案.这样看来,多层的结构就会带来更强大的模型,进行更复杂的识别. 那么在这一章,就试着训练这样的神经网络来看看对结果有没有什么提升.不过我们发现,训练的过程将会出现问题

DataWhale 动手学深度学习PyTorch版-task3+4+5:文本预处理;语言模型;循环神经网络基础

课程引用自伯禹平台:https://www.boyuai.com/elites/course/cZu18YmweLv10OeV <动手学深度学习>官方网址:http://zh.gluon.ai/ ——面向中文读者的能运行.可讨论的深度学习教科书. 第二次打卡: Task03: 过拟合.欠拟合及其解决方案:梯度消失.梯度爆炸:循环神经网络进阶 Task04:机器翻译及相关技术:注意力机制与Seq2seq模型:Transformer Task05:卷积神经网络基础:leNet:卷积神经网络进阶 有

第十四章——循环神经网络(Recurrent Neural Networks)(第二部分)

本章共两部分,这是第二部分: 第十四章--循环神经网络(Recurrent Neural Networks)(第一部分) 第十四章--循环神经网络(Recurrent Neural Networks)(第二部分) 14.4 深度RNN 堆叠多层cell是很常见的,如图14-12所示,这就是一个深度RNN. 图14-12 深度RNN(左),随时间展开(右) 在TensorFlow中实现深度RNN,需要创建多个cell并将它们堆叠到一个MultiRNNCell中.下面的代码创建了三个完全相同的cel

循环神经网络要点解析

参考: Understanding LSTM Networks (Karpathy blog )The Unreasonable Effectiveness of Recurrent Neural Networks (课程)CS224d: Deep Learning for Natural Language Processing (代码解析)Anyone Can Learn To Code an LSTM-RNN in Python (代码解析)深度学习笔记(四):循环神经网络的概念,结构和代码

动手学pytorch-循环神经网络进阶

循环神经网络进阶 1.GRU 2.LSTM 3.Deep RNN 4.Bidirection NN 1.GRU RNN存在的问题:梯度较容易出现衰减或爆炸(BPTT) ?控循环神经?络:捕捉时间序列中时间步距离较?的依赖关系 1.1数学表达式 \[ R_{t} = σ(X_tW_{xr} + H_{t?1}W_{hr} + b_r)\\ Z_{t} = σ(X_tW_{xz} + H_{t?1}W_{hz} + b_z)\\ \widetilde{H}_t = tanh(X_tW_{xh} +

DL4NLP——神经网络(二)循环神经网络:BPTT算法步骤整理;梯度消失与梯度爆炸

网上有很多Simple RNN的BPTT算法推导.下面用自己的记号整理一下. 我之前有个习惯是用下标表示样本序号,这里不能再这样表示了,因为下标需要用做表示时刻. 典型的Simple RNN结构如下: 图片来源:[3] 约定一下记号: 输入序列 $\textbf x_{(1:T)} =(\textbf x_1,\textbf x_2,...,\textbf x_T)$,每个时刻的值都是一个维数是词表大小的one-hot列向量: 标记序列 $\textbf y_{(1:T)} =(\textbf

循环神经网络(RNN)入门详细介绍

循环神经?络是为更好地处理时序信息而设计的.它引?状态变量来存储过去的信息,并?其与当前的输?共同决定当前的输出.循环神经?络常?于处理序列数据,如?段?字或声?.购物或观影的顺序,甚?是图像中的??或?列像素.因此,循环神经?络有着极为?泛的实际应?,如语?模型.?本分类.机器翻译.语?识别.图像分析.?写识别和推荐系统. 1.引入 对于2句话,都有Taipei这个词,但是一个是目的地,一个是出发地 如果神经网络有记忆力,能够根据上下文对同样的input词汇产生不同的输出,我们就能解决这个问题

循环神经网络(RNN)模型与前向反向传播算法

在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域. 1. RNN概述 在前面讲到的DNN和CNN中,训练样本的输入和输出是比较的确定的.但是有一类问题DNN和CNN不好解决,就是训练样本输入是连续的序列,且序列的长短不

循环神经网络RNN公式推导走读

0语言模型-N-Gram 语言模型就是给定句子前面部分,预测后面缺失部分 eg.我昨天上学迟到了,老师批评了____. N-Gram模型: ,对一句话切词 我 昨天 上学 迟到 了 ,老师 批评 了 ____. 2-N-Gram 会在语料库中找 了 后面最可能的词: 3-N-Gram 会在预料库中找 批评了 后面最可能的词: 4-N-Gram 的内存耗费就非常巨大了(语料库中保存所有的四个词的预料组合). 1.1单向循环神经网络 一个单隐层结构示意图: 参数:输入到隐层的权重U.隐层到输出的权重