电商类-高并发场景处理方式一

我简单说下

场景描述:秒杀场景

  1. 首先将总数量同步到Redis中,通过Redis的自减,到0时停止接收请求
  2. 将进来的请求放在mq中,去消费
  3. 消费成功自不必说了,消费失败后,将消费失败的用户id或手机号放入另外的mq中,mq通知用户抢购失败,另外Redis再自增1,可以继续接收用户请求

OK

原文地址:https://www.cnblogs.com/duende99/p/12290046.html

时间: 2024-10-03 16:21:35

电商类-高并发场景处理方式一的相关文章

Java生鲜电商平台-高并发核心技术订单与库存实战

Java生鲜电商平台-高并发核心技术订单与库存实战 一. 问题 一件商品只有100个库存,现在有1000或者更多的用户来购买,每个用户计划同时购买1个到几个不等商品. 如何保证库存在高并发的场景下是安全的? (1)不多发 (2)不少发 二. 下单的步骤 (1)下单 (2)下单同时预占库存 (3)支付 (4)支付成功真正减扣库存 (5)取消订单 (6)回退预占库存 三. 什么时候进行预占库存? (1)方案一:加入购物车的时候去预占库存 (2)方案二:下单的时候去预占库存 (3)方案三:支付的时候去

全流程开发 GO实战电商网站高并发秒杀系统

获取资源点击这里:全流程开发 GO实战电商网站高并发秒杀系统 第1章 课程介绍[学前须知] 本章对这门课程进行说明,包括:秒杀系统涉及模块的介绍,秒杀核心的知识点的介绍,课程的学习规划等. 1-1 课程介绍试看 第2章 需求整理&系统设计 [明确需求] 本章对秒杀系统整体需求进行梳理,明确系统具体需求,讲解系统原型设计工具的使用,并结合秒杀系统进行整体架构设计. 2-1 需求分析 2-2 系统架构设计 2-3 [总结&扩展]需求整理&系统设计 2-4 [勤于思考,夯实学习成果]阶段

利用乐观锁及redis解决电商秒杀高并发基本逻辑

解决秒杀高并发问题方法很多,如悲观锁,消息队列等…… 利用乐观锁及redis解决秒杀高并发基本逻辑 //初始化redis $redis = new Redis(); // 设置键值,起到监视作用  执行事务之前,判断被修改,回滚 $redis->watch('sales'); // 获取销量 $sales = $redis->get('sales'); // 如果销量存在,先删除,false // $redis->del('sales'); // 库存,秒杀两件产品 $store = 2

引用“人人都是产品经理“-移动端电商类页面设计说

引用:http://mt.sohu.com/20160119/n435004127.shtml 移动端产品最难的地方就是在很小的屏幕上展示出你所有的业务.有了屏幕的限制,加上移动端的客户碎片化阅读的习惯和高流失率.特别是电商类app更难展示出来.所以才有了像列表式小ICON展示方式.电商的标准配置的首页都会将banner保留下来了,作为运营推广最重要的手段之一.而电商app是要展示内容最多也是最难做的一类app.既要保证业务首页展示完整性,还要保证用户体验.所以在每一个页面设计时都要讲究一些技巧

高并发场景下缓存+数据库双写不一致问题分析与解决方案设计

Redis是企业级系统高并发.高可用架构中非常重要的一个环节.Redis主要解决了关系型数据库并发量低的问题,有助于缓解关系型数据库在高并发场景下的压力,提高系统的吞吐量(具体Redis是如何提高系统的性能.吞吐量,后面会专门讲). 而我们在Redis的实际使用过程中,难免会遇到缓存与数据库双写时数据不一致的问题,这也是我们必须要考虑的问题.如果还有同学不了解这个问题,可以搬小板凳来听听啦. 一.数据库+缓存双写不一致问题引入 要讲数据库+缓存双写不一致的问题,就需要先讲一下这个问题是怎么发生的

缓存在高并发场景下的常见问题

缓存一致性问题 当数据时效性要求很高时,需要保证缓存中的数据与数据库中的保持一致,而且需要保证缓存节点和副本中的数据也保持一致,不能出现差异现象.这就比较依赖缓存的过期和更新策略.一般会在数据发生更改的时,主动更新缓存中的数据或者移除对应的缓存. 缓存并发问题 缓存过期后将尝试从后端数据库获取数据,这是一个看似合理的流程.但是,在高并发场景下,有可能多个请求并发的去从数据库获取数据,对后端数据库造成极大的冲击,甚至导致 “雪崩”现象.此外,当某个缓存key在被更新时,同时也可能被大量请求在获取,

Golang适合高并发场景的原因分析

典型的两个现实案例: 我们先看两个用Go做消息推送的案例实际处理能力. 360消息推送的数据: 16台机器,标配:24个硬件线程,64GB内存 Linux Kernel 2.6.32 x86_64 单机80万并发连接,load 0.2~0.4,CPU 总使用率 7%~10%,内存占用20GB (res) 目前接入的产品约1280万在线用户 2分钟一次GC,停顿2秒 (1.0.3 的 GC 不给力,直接升级到 tip,再次吃螃蟹) 15亿个心跳包/天,占大多数. 京东云消息推送系统 (团队人数:4

高并发场景下System.currentTimeMillis()的性能问题的优化 以及SnowFlakeIdWorker高性能ID生成器

package xxx; import java.sql.Timestamp; import java.util.concurrent.*; import java.util.concurrent.atomic.AtomicLong; /** * 高并发场景下System.currentTimeMillis()的性能问题的优化 * <p><p> * System.currentTimeMillis()的调用比new一个普通对象要耗时的多(具体耗时高出多少我还没测试过,有人说是100

高并发场景下的缓存有哪些常见的问题?

一.缓存一致性问题 当数据时效性要求很高时,需要保证缓存中的数据与数据库中的保持一致,而且需要保证缓存节点和副本中的数据也保持一致,不能出现差异现象. 这就比较依赖缓存的过期和更新策略.一般会在数据发生更改的时,主动更新缓存中的数据或者移除对应的缓存. 二.缓存并发问题 缓存过期后将尝试从后端数据库获取数据,这是一个看似合理的流程.但是,在高并发场景下,有可能多个请求并发的去从数据库获取数据,对后端数据库造成极大的冲击,甚至导致 "雪崩"现象. 此外,当某个缓存key在被更新时,同时也