糖果传递(基于贪心的数学问题)

0807 糖果传递 0x08「基本算法」练习

描述

有n个小朋友坐成一圈,每人有a[i]个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。求使所有人获得均等糖果的最小代价。

输入格式

第一行一个正整数n<=1000000,表示小朋友的个数。接下来n行,每行一个整数a[i],表示第i个小朋友初始得到的糖果的颗数.

输出格式

一个整数,表示答案。

样例输入

4
1
2
5
4

样例输出

4

来源

NOI2008河南省选

解析:

  首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示。

  假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友给了第i个小朋友Xi颗糖果,X1表示第一个小朋友给第n个小朋友的糖果数量。 所以最后的答案就是ans=|X1| + |X2| + |X3| + ……+ |Xn|。

  对于第一个小朋友,他给了第n个小朋友X1颗糖果,还剩A1-X1颗糖果;但因为第2个小朋友给了他X2颗糖果,所以最后还剩A1-X1+X2颗糖果。根据题意,最后的糖果数量等于ave,即得到了一个方程:A1-X1+X2=ave。

  同理,对于第2个小朋友,有A2-X2+X3=ave。最终,我们可以得到n个方程,一共有n个变量,但是因为从前n-1个方程可以推导出最后一个方程,所以实际上只有n-1个方程是有用的。

  尽管无法直接解出答案,但可以用X1表示出其他的Xi,那么本题就变成了单变量的极值问题。

  对于第1个小朋友,A1-X1+X2=ave  ->  X2=ave-A1+X1 = X1-C1(假设C1=A1-ave,下面类似)

  对于第2个小朋友,A2-X2+X3=ave  ->  X3=ave-A2+X2=2ave-A1-A2+X1=X1-C2

  对于第3个小朋友,A3-X3+X4=ave  ->  X4=ave-A3+X3=3ave-A1-A2-A3+X1=X1-C3

  ……

  对于第n个小朋友,An-Xn+X1=ave。

  我们希望Xi的绝对值之和尽量小,即|X1| + |X1-C1| + |X1-C2| + ……+ |X1-Cn-1|要尽量小。注意到|X1-Ci|的几何意义是数轴上的点X1到Ci的距离,所以问题变成了:给定数轴上的n个点,找出一个到他们的距离之和尽量小的点,而这个点就是这些数中的中位数,证明略。

#include<bits/stdc++.h>
using namespace std;
int n,a[1500000],ave;
long long c[1850000],tot;
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        tot+=a[i];
    }
    ave=tot/n;
    for(int i=1;i<=n-1;i++)
        c[i]=c[i-1]+a[i]-ave;

    sort(c,c+n);
    int mid=(n-1)/2;
    long long ans=0;
    for(int i=0;i<=mid;++i)
        ans+=c[n-i-1]-c[i];

    printf("%lld",ans);
}

原文地址:https://www.cnblogs.com/719666a/p/10089161.html

时间: 2024-10-16 05:24:36

糖果传递(基于贪心的数学问题)的相关文章

B1045 糖果传递 数学

糖果传递,一开始就想到了n^2的模拟贪心算法,但是一看,数据范围太大,好像只有O(N)能过...没啥方法,只好看题解,之后发现,woc,还有这种操作? 这个题直接可以用数学证明... 证明如下: 首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示. 假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友给了第i个小朋友Xi颗糖果,X1表示第一个小朋友给第n个小朋友的糖果数量. 所以最后的答案就是ans

bzoj 1045: [HAOI2008] 糖果传递 贪心

1045: [HAOI2008] 糖果传递 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1812  Solved: 846[Submit][Status] Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 小朋友个数n 下面n行 ai Output 求使所有人获得均等糖果的最小代价. Sample Input 4 1 2 5 4 Sample Output 4

P2512 [HAOI2008]糖果传递 - 贪心+中位数【环形均分纸牌问题】

P2512 [HAOI2008]糖果传递 Sol: 环形均分纸牌问题 考虑最基本的均分纸牌问题,相当于将环从1与n之间断开. 令\(res_i\)表示第\(i\)个人达到平均值所用步数,ave$表示糖果的平均数. 则 \(res_1=a_1-ave\) \(res_2=a_2-ave+res_1=a_1+a_2+2*ave\) \(res_3=a_3-ave+res_2=a_1+a_2+a_3-3*ave\) \(\dots\) \(res_i=a_i-ave+res_{i-1}=\sum_{j

基于贪心算法求解TSP问题(JAVA)

前段时间在搞贪心算法,为了举例,故拿TSP来开刀,写了段求解算法代码以便有需之人,注意代码考虑可读性从最容易理解角度写,没有优化,有需要可以自行优化! 一.TSP问题 TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市.路径的选择目标是要求得的路径路程为所有路径之中的最小值. TSP问题

bzoj1045: [HAOI2008] 糖果传递(数论)

1045: [HAOI2008] 糖果传递 题目:传送门(双倍经验3293) 题解: 一开始想着DP贪心一顿乱搞,结果就GG了 十分感谢hzwer大佬写的毒瘤数论题解: 首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示. 假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友给了第i个小朋友Xi颗糖果,X1表示第一个小朋友给第n个小朋友的糖果数量. 所以最后的答案就是ans=|X1| + |X2|

bzoj1045 糖果传递

escription 老师准备了一堆糖果, 恰好n个小朋友可以分到数目一样多的糖果. 老师要n个小朋友去拿糖果, 然后围着圆桌坐好, 第1个小朋友的左边是第n个小朋友, 其他第i个小朋友左边是第i-1个小朋友. 大家坐好后, 老师发现, 有些小朋友抢了很多的糖果, 有的小朋友只得到了一点点糖果, 甚至一颗也没有 ?, 设第i个小朋友有ai颗糖果. 小朋友们可以选择将一些糖果给他左边的或者右边的小朋友, 通过”糖果传递”最后使得每个小朋友得到的糖果数是一样多的, 假设一颗糖果从一个小朋友传给另一个

转载︱案例 基于贪心算法的特征选择

转载︱案例 基于贪心算法的特征选择 用GA算法设计22个地点之间最短旅程-R语言实现 -------------------------------------------------------- greedy Algorithm Feature Selection 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑, 它所做出的是在某种意义上的局部最优解.贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心 策

[HAOI2008] 糖果传递

1045: [HAOI2008] 糖果传递 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4184  Solved: 2026 [Submit][Status][Discuss] Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数n<=987654321,表示小朋友的个数.接下来n行,每行一个整数ai,表示第i个小朋友得到的 糖果的颗数. Ou

BZOJ1465: 糖果传递

1465: 糖果传递 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 277  Solved: 105[Submit][Status] Description 老师准备了一堆糖果, 恰好n个小朋友可以分到数目一样多的糖果. 老师要n个小朋友去拿糖果, 然后围着圆桌坐好, 第1个小朋友的左边是第n个小朋友, 其他第i个小朋友左边是第i-1个小朋友. 大家坐好后, 老师发现, 有些小朋友抢了很多的糖果, 有的小朋友只得到了一点点糖果, 甚至一颗也没有 ?,