Kubernetes 健康状态检查(九)

强大的自愈能力是 Kubernetes 这类容器编排引擎的一个重要特性。自愈的默认实现方式是自动重启发生故障的容器。除此之外,用户还可以利用 LivenessReadiness 探测机制设置更精细的健康检查,进而实现如下需求:

  • 零停机部署。
  • 避免部署无效的镜像。
  • 更加安全的滚动升级。

一、Liveness 探测

Liveness 探测让用户可以自定义判断容器是否健康的条件。如果探测失败,Kubernetes 就会重启容器。

我们创建一个 Pod 的配置文件liveness.yaml,可以使用命令kubectl explain pod.spec.containers.livenessProbe查看其使用方法。

apiVersion: v1
kind: Pod
metadata:
  name: liveness
  labels:
    test: liveness
spec:
  restartPolicy: OnFailure
  containers:
  - name: liveness
    image: busybox
    args:
    - /bin/sh
    - -c
    - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600
    livenessProbe:
      exec:
        command:
        - cat
        - /tmp/healthy
      initialDelaySeconds: 10
      periodSeconds: 5

启动进程首先创建文件 /tmp/healthy,30 秒后删除,在我们的设定中,如果 /tmp/healthy 文件存在,则认为容器处于正常状态,反正则发生故障。

livenessProbe 部分定义如何执行 Liveness 探测:

  1. 探测的方法是:通过 cat 命令检查 /tmp/healthy 文件是否存在。如果命令执行成功,返回值为零,Kubernetes 则认为本次 Liveness 探测成功;如果命令返回值非零,本次 Liveness 探测失败。
  2. initialDelaySeconds: 10 指定容器启动 10 之后开始执行 Liveness 探测,我们一般会根据应用启动的准备时间来设置。比如某个应用正常启动要花 30 秒,那么initialDelaySeconds 的值就应该大于 30。
  3. periodSeconds: 5 指定每 5 秒执行一次 Liveness 探测。Kubernetes 如果连续执行 3 次 Liveness 探测均失败,则会杀掉并重启容器。

下面创建 Pod liveness:

[[email protected] ~]# kubectl apply -f liveness.yaml
pod/liveness created

从配置文件可知,最开始的 30 秒,/tmp/healthy 存在,cat 命令返回 0,Liveness 探测成功,这段时间 kubectl describe pod liveness 的 Events部分会显示正常的日志。

[[email protected] ~]# kubectl describe pod liveness

Events:
  Type    Reason     Age   From               Message
  ----    ------     ----  ----               -------
  Normal  Pulling    25s   kubelet, node02    pulling image "busybox"
  Normal  Pulled     24s   kubelet, node02    Successfully pulled image "busybox"
  Normal  Created    24s   kubelet, node02    Created container
  Normal  Started    23s   kubelet, node02    Started container
  Normal  Scheduled  23s   default-scheduler  Successfully assigned default/liveness to node02

35 秒之后,日志会显示 /tmp/healthy 已经不存在,Liveness 探测失败。再过几十秒,几次探测都失败后,容器会被重启。

[[email protected] ~]# kubectl describe pod liveness

Events:
  Type     Reason     Age                    From               Message
  ----     ------     ----                   ----               -------
  Normal   Scheduled  6m9s                   default-scheduler  Successfully assigned default/liveness to node02
  Normal   Pulled     3m41s (x3 over 6m10s)  kubelet, node02    Successfully pulled image "busybox"
  Normal   Created    3m41s (x3 over 6m10s)  kubelet, node02    Created container
  Normal   Started    3m40s (x3 over 6m9s)   kubelet, node02    Started container
  Warning  Unhealthy  2m57s (x9 over 5m37s)  kubelet, node02    Liveness probe failed: cat: can‘t open ‘/tmp/healthy‘: No such file or directory
  Normal   Pulling    2m27s (x4 over 6m11s)  kubelet, node02    pulling image "busybox"
  Normal   Killing    60s (x4 over 4m57s)    kubelet, node02    Killing container with id docker://liveness:Container failed liveness probe.. Container will be killed and recreated.

然后我们查看容器,已经重启了一次。

[[email protected] ~]# kubectl get pod
NAME       READY   STATUS    RESTARTS   AGE
liveness   1/1     Running   3          5m13s

二、Readiness 探测

用户通过 Liveness 探测可以告诉 Kubernetes 什么时候通过重启容器实现自愈;Readiness 探测则是告诉 Kubernetes 什么时候可以将容器加入到 Service 负载均衡池中,对外提供服务。

Readiness 探测的配置语法与 Liveness 探测完全一样,我们创建配置文件readiness.yaml

apiVersion: v1
kind: Pod
metadata:
  name: readiness
  labels:
    test: readiness
spec:
  restartPolicy: OnFailure
  containers:
  - name: readiness
    image: busybox
    args:
    - /bin/sh
    - -c
    - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600
    readinessProbe:
      exec:
        command:
        - cat
        - /tmp/healthy
      initialDelaySeconds: 10
      periodSeconds: 5

创建 Pod,然后查看其状态。

[[email protected] ~]# kubectl apply -f readiness.yaml
pod/readiness created

刚刚创建时,READY 状态为不可用。

[[email protected] ~]# kubectl get pod
NAME        READY   STATUS    RESTARTS   AGE
readiness   0/1     Running   0          21s

15 秒后(initialDelaySeconds + periodSeconds),第一次进行 Readiness 探测并成功返回,设置 READY 为可用。

[[email protected] ~]# kubectl get pod
NAME        READY   STATUS    RESTARTS   AGE
readiness   1/1     Running   0          38s

30 秒后,/tmp/healthy 被删除,连续 3 次 Readiness 探测均失败后,READY 被设置为不可用。

[[email protected] ~]# kubectl get pod
NAME        READY   STATUS    RESTARTS   AGE
readiness   0/1     Running   0          63s

通过 kubectl describe pod readiness 也可以看到 Readiness 探测失败的日志。

Events:
  Type     Reason     Age                   From               Message
  ----     ------     ----                  ----               -------
  Normal   Pulling    5m29s                 kubelet, node01    pulling image "busybox"
  Normal   Scheduled  5m25s                 default-scheduler  Successfully assigned default/readiness to node01
  Normal   Pulled     5m13s                 kubelet, node01    Successfully pulled image "busybox"
  Normal   Created    5m12s                 kubelet, node01    Created container
  Normal   Started    5m12s                 kubelet, node01    Started container
  Warning  Unhealthy  28s (x51 over 4m38s)  kubelet, node01    Readiness probe failed: cat: can‘t open ‘/tmp/healthy‘: No such file or directory

下面对 Liveness 探测和 Readiness 探测做个比较:

  1. Liveness 探测和 Readiness 探测是两种 Health Check 机制,如果不特意配置,Kubernetes 将对两种探测采取相同的默认行为,即通过判断容器启动进程的返回值是否为零来判断探测是否成功。
  2. 两种探测的配置方法完全一样,支持的配置参数也一样。不同之处在于探测失败后的行为:Liveness 探测是重启容器;Readiness 探测则是将容器设置为不可用,不接收 Service 转发的请求。
  3. Liveness 探测和 Readiness 探测是独立执行的,二者之间没有依赖,所以可以单独使用,也可以同时使用。用 Liveness 探测判断容器是否需要重启以实现自愈;用 Readiness 探测判断容器是否已经准备好对外提供服务。

三、Health Check 在 Scale Up 中的应用

对于多副本应用,当执行 Scale Up 操作时,新副本会作为 backend 被添加到 Service 的负责均衡中,与已有副本一起处理客户的请求。考虑到应用启动通常都需要一个准备阶段,比如加载缓存数据,连接数据库等,从容器启动到正真能够提供服务是需要一段时间的。我们可以通过 Readiness 探测判断容器是否就绪,避免将请求发送到还没有 ready 的 backend。

下面我们创建一个配置文件来说明这种情况。

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: web
spec:
  replicas: 3
  template:
    metadata:
      labels:
        run: web
    spec:
      containers:
      - name: web
        images: myhttpd
        ports:
        - containerPort: 8080
        readinessProbe:
          httpGet:
            scheme: HTTP
            path: /health
            port: 8080
          initialDelaySeconds: 10
          periodSeconds: 5
---
apiVersion: v1
kind: Service
metadata:
  name: web-svc
spec:
  selector:
    run: web
  ports:
  - protocol: TCP
    port: 8080
    targetPort: 80

重点关注 readinessProbe 部分。这里我们使用了不同于 exec 的另一种探测方法 -- httpGet。Kubernetes 对于该方法探测成功的判断条件是 http 请求的返回代码在 200-400 之间。

  • schema 指定协议,支持 HTTP(默认值)和 HTTPS。
  • path 指定访问路径。
  • port 指定端口。

上面配置的作用是:

  1. 容器启动 10 秒之后开始探测。
  2. 如果 http://[container_ip]:8080/healthy 返回代码不是 200-400,表示容器没有就绪,不接收 Service web-svc 的请求。
  3. 每隔 5 秒再探测一次。
  4. 直到返回代码为 200-400,表明容器已经就绪,然后将其加入到 web-svc 的负责均衡中,开始处理客户请求。
  5. 探测会继续以 5 秒的间隔执行,如果连续发生 3 次失败,容器又会从负载均衡中移除,直到下次探测成功重新加入。

对于生产环境中重要的应用都建议配置 Health Check,保证处理客户请求的容器都是准备就绪的 Service backend。

四、Health Check 在 Rolling Update 中的应用

Health Check 另一个重要的应用场景是 Rolling Update。试想一下下面的情况,现有一个正常运行的多副本应用,接下来对应用进行更新(比如使用更高版本的 image),Kubernetes 会启动新副本,然后发生了如下事件:

  1. 正常情况下新副本需要 10 秒钟完成准备工作,在此之前无法响应业务请求。
  2. 但由于人为配置错误,副本始终无法完成准备工作(比如无法连接后端数据库)。

因为新副本本身没有异常退出,默认的 Health Check 机制会认为容器已经就绪,进而会逐步用新副本替换现有副本,其结果就是:当所有旧副本都被替换后,整个应用将无法处理请求,无法对外提供服务。如果这是发生在重要的生产系统上,后果会非常严重。

如果正确配置了 Health Check,新副本只有通过了 Readiness 探测,才会被添加到 Service;如果没有通过探测,现有副本不会被全部替换,业务仍然正常进行。

下面通过例子来实践 Health Check 在 Rolling Update 中的应用。

用如下配置文件 app.v1.yml 模拟一个 10 副本的应用:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: app
spec:
  replicas: 10
  template:
    metadata:
      labels:
        run: app
    spec:
      containers:
      - name: app
        images: busybox
        args:
        - /bin/sh
        - -c
        - sleep 10; touch /tmp/healthy; sleep 30000
        readinessProbe:
          exec:
            command:
            - cat
            - /tmp/healthy
          initialDelaySeconds: 10
          periodSeconds: 5

10 秒后副本能够通过 Readiness 探测。

[[email protected] ~]# kubectl apply -f app.v1.yaml
deployment.extensions/app created
[[email protected] ~]# kubectl get pods
NAME                   READY   STATUS    RESTARTS   AGE
app-56878b4676-4rftg   1/1     Running   0          34s
app-56878b4676-6jtn4   1/1     Running   0          34s
app-56878b4676-6smfj   1/1     Running   0          34s
app-56878b4676-8pnc2   1/1     Running   0          34s
app-56878b4676-hxzjk   1/1     Running   0          34s
app-56878b4676-mglht   1/1     Running   0          34s
app-56878b4676-t2qs6   1/1     Running   0          34s
app-56878b4676-vgw44   1/1     Running   0          34s
app-56878b4676-vnxfx   1/1     Running   0          34s
app-56878b4676-wb9rh   1/1     Running   0          34s

接下来滚动更新应用,配置文件 app.v2.yml如下:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: app
spec:
  replicas: 10
  template:
    metadata:
      labels:
        run: app
    spec:
      containers:
      - name: app
        image: busybox
        args:
        - /bin/sh
        - -c
        - sleep 30000
        readinessProbe:
          exec:
            command:
            - cat
            - /tmp/healthy
          initialDelaySeconds: 10
          periodSeconds: 5

很显然,由于新副本中不存在 /tmp/healthy,是无法通过 Readiness 探测的。验证如下:

[[email protected] ~]# kubectl apply -f app.v2.yaml
deployment.extensions/app configured
[[email protected] ~]# kubectl get pod
NAME                   READY   STATUS    RESTARTS   AGE
app-56878b4676-4rftg   1/1     Running   0          4m42s
app-56878b4676-6jtn4   1/1     Running   0          4m42s
app-56878b4676-6smfj   1/1     Running   0          4m42s
app-56878b4676-hxzjk   1/1     Running   0          4m42s
app-56878b4676-mglht   1/1     Running   0          4m42s
app-56878b4676-t2qs6   1/1     Running   0          4m42s
app-56878b4676-vgw44   1/1     Running   0          4m42s
app-56878b4676-vnxfx   1/1     Running   0          4m42s
app-56878b4676-wb9rh   1/1     Running   0          4m42s
app-84fc656775-hf954   0/1     Running   0          66s
app-84fc656775-p287w   0/1     Running   0          66s
[[email protected] ~]# kubectl get deploy
NAME   READY   UP-TO-DATE   AVAILABLE   AGE
app    9/10    2            9           7m1s

先关注 kubectl get pod 输出:

  1. 从 Pod 的 AGE 栏可判断,最后 2 个 Pod 是新副本,目前处于 NOT READY 状态。
  2. 旧副本从最初 10 个减少到 8 个。

再来看 kubectl get deployment app 的输出:

  1. DESIRED 10 表示期望的状态是 10 个 READY 的副本。
  2. UP-TO-DATE 2 表示当前已经完成更新的副本数:即 2 个新副本。
  3. AVAILABLE 9 表示当前处于 READY 状态的副本数:即 9个旧副本。

在我们的设定中,新副本始终都无法通过 Readiness 探测,所以这个状态会一直保持下去。

上面我们模拟了一个滚动更新失败的场景。不过幸运的是:Health Check 帮我们屏蔽了有缺陷的副本,同时保留了大部分旧副本,业务没有因更新失败受到影响。

滚动更新可以通过参数 maxSurgemaxUnavailable 来控制副本替换的数量。

原文地址:http://blog.51cto.com/wzlinux/2329049

时间: 2024-10-01 06:32:02

Kubernetes 健康状态检查(九)的相关文章

pod管理调度约束、与健康状态检查

pod的管理 [[email protected] ~]# vim pod.yaml apiVersion: v1 kind: Pod metadata: name: nginx-pod labels: app: nginx spec: containers: - name: nginx image: nginx 创建pod [[email protected] ~]# kubectl create -f pod.yaml 查看pod信息 [[email protected] ~]# kubec

服务器健康状态检查脚本

在日常工作中,我们经常会定期的检查各个服务器的状态,通过此shell脚本系统可以定期的将每日服务器的检查结果发送到邮箱中,此脚本在正式环境中已稳定运行. 因为我们需要通过邮件发送检测结果,首先必须在服务器上开启sendmail服务并设置为开机自启动,然后需要在/etc/mail.rc中设置相应的参数,/etc/mail.rc中参数的设置如下: set from=邮箱地址 set smtp=smtp服务器的地址 set smtp-auth-user=邮箱的用户名 set smtp-auth-pas

Oracle 数据库健康状态检查

数据库健康状态检查 使用utl指令.statspack.awr来检查数据库的健康状态 前提: > show parameter time_ timed_statistics; NAME TYPE VALUE ------------------------------------ ----------- ------------------------------ timed_statistics boolean TRUE 1:utl ##在8i之前只有这个方式,当然在后续的版本中还是有这个功能

完成rs健康状态检查。

VS具有很好的伸缩缩性.可靠性和管埋性,通过LVS要实现的最终目标是:利用linux 操作系统和LVS集群软件实现一个高可用.高性能,低成本的服务器应用集群. LVS集群的组成利用LVS架设的服务器群系统由3个部分组成:最前端的是负栽均衡层(这里用 Lo ad Balancer表示),中间是服务器集群层(用Server Array表示).LVS体系结构如下图所示: 下面对LVS的各个组成部分进行详细介绍负 栽均衡层:位于整个集群系统的最前端,由一台或多台负栽调度器(Dircctm Server)

如何利用nginx_upstream_check_module-master对nginx的后端机器进行健康状态检查

用nginx做前端反向代理,如果后端服务器宕掉的话,nginx是不会把这台realserver踢出upstream的,还会把请求转发到后端的这台realserver上面.所以当某台机器出现问题时,我们会看到nginx的日志会有一段转发失败然后转发正常的日志.这次借助与淘宝技术团队开发的nginx模快nginx_upstream_check_module来检测后方realserver的健康状态,如果后端服务器不可用,则会将其踢出upstream,所有的请求不转发到这台服务器.当期恢复正常时,将其加

利用ldirectord实现lvs后端realserver健康状态检查

ldirectord用来实现LVS负载均衡资源在主.备节点间的故障转移.在首次启动时,ldirectord可以自动创建IPVS表.此外,它还可以监控各RealServer的运行状态,一旦发现某RealServer运行异常时,还可以将其从IPVS表中移除. ldirectord进程通过向RealServer的RIP发送资源访问请求并通过由RealServer返回的响应信息来确定RealServer的运行状态.在Director上,每一个VIP需要一个单独的ldirectord进程.如果RealSe

LVS集群RS健康状态检查

生产中,我们需要检测RS状态,当RS服务异常时,应该将RS移出集群,而当RS恢复之后,再将RS加入到集群中.下面是脚本内容 #!/bin/bash VIP=192.168.10.3 ##集群服务端口号 CPORT=80 RS=(192.168.10.7 192.168.10.8) ###RS主机的状态,1表示状态正常 RSTATUS=(1 1) #权重 RW=(2 1) ###RS主机上实际的服务端口 RPORT=80 ###lVS的模式,这里以DR模式为例 TYPE=g ###add函数表示将

nutanix ncc 健康状态检查

[email protected]:IP:~$ ncc health_checks run_all #################################### # TIMESTAMP : 12/11/2019 11:11:51 AM #################################### ncc_version: 3.8.0.1-e1c40011 cluster id: 437130685937377560 cluster name: node with serv

Lvs FWM及持久连接、健康状态监测

本文介绍关于LVS的健康状态监测及持久连接 lvs的persistence: lvs持久连接 无论使用哪一种调度方法,持久连接功能都能保证在指定时间范围之内,来自于同一个IP的请求将始终被定向至同一个RS: persistence template:持久连接模板 PPC:每端口持久:持久连接生效范围仅为单个集群服务:如果有多个集群服务,每服务被单独持久调度: PCC:每客户端持久:持久连接生效范围为所有服务:定义集群服务时,其TCP或UDP协议的目标端口要使用0: PFWM:持久防火墙标记:每F