常用排序算法 - 稳定性和复杂度分析

一、前言

  上一篇,只是简单的记录了常用算法的主要思想以及代码实现( 常用算法记录 );

  这次简单的记录一下算法的稳定性以及复杂度

二、稳定性

1. 稳定性的定义

  如果两个相等的数据的先后位置,排序前后保持不变的话,那就是稳定的,反之,就是不稳定;

  例如:A[i] == A[j] , A[i]的位置在A[j]之前,排序后,A[i]的位置依然在A[j]之前;

2. 稳定性的好处

  (1)如果排序算法是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所利用。

  基数排序就是这样,先按低位排序,逐次按高位排序,那么,低位相同的数据元素其先后位置顺序即使在高位也相同时是不会改变的。

  (2)学习排序原理时,可能编的程序里面要排序的元素都是简单类型,实际上真正应用时,可能是对一个复杂类型(自定义类型)的数组排序,

  而排序的键值仅仅只是这个元素中的一个属性,对于一个简单类型,数字值就是其全部意义,即使交换了也看不出什么不同。

  但是,对于复杂类型,交换的话可能就会使原本不应该交换的元素交换了。比如:一个“学生”数组,欲按照年龄排序,“学生”这个对象不仅含有“年龄”,还有其它很多属性。

  假使原数组是把学号作为主键由小到大进行的数据整理。而稳定的排序会保证比较时,如果两个学生年龄相同,一定不会交换。

  那也就意味着尽管是对“年龄”进行了排序,但是学号顺序仍然是由小到大的要求。

3. 算法的稳定性分析

  (1)冒泡排序

  冒泡排序就是把小的元素往前调(或者把大的元素往后调)。注意是相邻的两个元素进行比较,而且是否需要交换也发生在这两个元素之间。

所以,如果两个元素相等,我想你是不会再无聊地把它们俩再交换一下。

如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个元素相邻起来,最终也不会交换它俩的位置,所以相同元素经过排序后顺序并没有改变。

所以冒泡排序是一种稳定排序算法

  (2)选择排序

  选择排序即是给每个位置选择待排序元素中当前最小的元素。比如给第一个位置选择最小的,在剩余元素里面给第二个位置选择次小的,

依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。

那么,在一趟选择时,如果当前锁定元素比后面一个元素大,而后面较小的那个元素又出现在一个与当前锁定元素相等的元素后面,那么交换后位置顺序显然改变了。

  举个例子:序列5 8 5 2 9, 我们知道第一趟选择第1个元素5会与2进行交换,那么原序列中两个5的相对先后顺序也就被破坏了。

所以选择排序不是一个稳定的排序算法

  (3)插入排序

  插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,也就是第一个元素(默认它有序)。

比较是从有序序列的末尾开始,也就是把待插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面。

否则一直往前找直到找到它该插入的位置。如果遇见一个与插入元素相等的,那么把待插入的元素放在相等元素的后面。

所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序仍是排好序后的顺序,所以插入排序是稳定的

  (4)快速排序

  快速排序有两个方向,左边的i下标一直往右走(当条件a[i] <= a[center_index]时),其中center_index是中枢元素的数组下标,一般取为数组第0个元素。

而右边的j下标一直往左走(当a[j] > a[center_index]时)。

如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j。交换a[j]和a[center_index],完成一趟快速排序。

在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为 5 3 3 4 3 8 9 10 11

现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱。

所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j]交换的时刻。

  (5)归并排序

  归并排序是把序列递归地分成短序列,递归出口是短序列只有1个元素(认为直接有序)或者2个序列(1次比较和交换),

然后把各个有序的段序列合并成一个有序的长序列,不断合并直到原序列全部排好序。

可以发现,在1个或2个元素时,1个元素不会交换,2个元素如果大小相等也没有人故意交换,这不会破坏稳定性。

那么,在短的有序序列合并的过程中,稳定是是否受到破坏?

没有,合并过程中我们可以保证如果两个当前元素相等时,我们把处在前面的序列的元素保存在结果序列的前面,这样就保证了稳定性。

所以,归并排序也是稳定的排序算法

  (6)基数排序

  基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。

有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序结果就是高优先级高的在前,高优先级相同的情况下低优先级高的在前。

基数排序基于分别排序,分别收集,所以其是稳定的排序算法

  (7)希尔排序

  希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;

当元素基本有序时,步长很小,插入排序对于有序的序列效率很高。所以,希尔排序的时间复杂度会比O(N^2)好一些。

由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,

但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱。

所以希尔排序是不稳定的排序算法

  (8)堆排序

  我们知道堆的结构是节点i的孩子为2*i和2*i+1节点,大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点。

在一个长为n的序列,堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。

但当为n/2-1, n/2-2, ...1这些个父节点选择元素时,就会破坏稳定性。

有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没有交换,那么这2个相同的元素之间的稳定性就被破坏了。

所以,堆排序不是稳定的排序算法

三、复杂度

   简而言之,用下列表格表示

排序方式 时间复杂度 空间复杂度 稳定性
平均情况   最坏情况 最好情况
冒泡排序
O(n2)

O(n2) O(n) O(1) 稳定 
插入排序 O(n2) O(n2) O(n) O(1) 稳定
归并排序 O(nlogn) O(nlogn) O(nlogn) O(n) 稳定 
基数排序 O(d(n+r)) O(d(n+r)) O(d(n+r)) O(r) 稳定 
选择排序 O(n2) O(n2) O(n2)  O(1) 不稳定 
快速排序 O(nlogn) O(n2) O(nlogn)  O(logn) 不稳定 
希尔排序  ——  O(log2n) ——  O(1)  不稳定 
堆排序 O(nlogn) O(nlogn) O(nlogn) O(1) 不稳定 

    参考资料:http://segmentfault.com/a/1190000002595152

         http://www.cnblogs.com/nannanITeye/archive/2013/04/11/3013737.html

  

时间: 2024-12-15 00:35:42

常用排序算法 - 稳定性和复杂度分析的相关文章

数据结构——排序——8种常用排序算法稳定性分析

首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同.在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前. 其次,说一下稳定性的好处.排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用.基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的.另外,如果排序算法稳定,对基于比较的排序算法而言

排序算法的时空复杂度、稳定性分析

1.基本概念 2.时空复杂度 3.稳定性 4.使用情况分析 排序算法总结(C语言版)已介绍排序算法的基本思想和C语言实现,本文只介绍时空复杂度和稳定性. 1.基本概念 时间复杂度: 一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法的语句执行次数称为语句频度或时间频度.记为T(n).n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化.但有时我们想知道它变化时呈现什么规律,为此,引入时间复杂度概念.若有某个辅助函数f(n),使得当n趋近

常用排序算法比较与分析

一.常用排序算法简述 下面主要从排序算法的基本概念.原理出发,分别从算法的时间复杂度.空间复杂度.算法的稳定性和速度等方面进行分析比较.依据待排序的问题大小(记录数量 n)的不同,排序过程中需要的存储器空间也不同,由此将排序算法分为两大类:[内排序].[外排序]. 内排序:指排序时数据元素全部存放在计算机的随机存储器RAM中. 外排序:待排序记录的数量很大,以致内存一次不能容纳全部记录,在排序过程中还需要对外存进行访问的排序过程. 先了解一下常见排序算法的分类关系(见图1-1) 图1-1 常见排

常用排序算法实现[交换排序之冒泡排序、快速排序]

相关知识 1. 稳定排序和非稳定排序: 稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序. 如果排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前. 2. 内排序和外排序 在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序: 在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序. 3.算法分类 排序算法从理论上分为如下几类: (1) 交换排序法:

几种常用排序算法 (一)

八大常用排序算法详细分析 包括复杂度: 排序有可以分为以下几类: (1).交换排序:冒泡排序.快速排序 (2).选择排序:直接选择排序.堆排序 (3).插入排序:直接插入排序.希尔排序 (4).归并排序 (5).基数排序(桶排序) 1.冒泡排序 顾名思义,冒泡排序就是用气泡从下往上冒的原理,将气泡(较小或较大的数)依次往前移. 具体做法(升序):设总共有N个元素,则至少需要进行N-1次冒泡.一次排序排序中,若前一个元素大于后一个元素,则交换两个元素,然后在依次判  断后面两两相邻元素大小并进行交

七种常用排序算法

七种常用排序算法 一.常见排序算法一览: 时间复杂度: 是一个函数,它定量描述了该算法的运行时间. 空间复杂度:一个算法在运行过程中临时占用存储空间大小的量度. 稳定性:保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同就稳定,反之不稳定. 视觉直观感受 7 种常用的排序算法 二.算法C#实现: 1. 直接插入排序: using System; using System.Collections.Generic; using System.Linq; using Sys

常用排序算法时间复杂度和空间复杂度简析

1. preface /**** *    This article will try to explain something about: *        --Bubble sort. *        --Quick sort. *        --Merge sort. *        --Heap sort. *    To read this, some prerequisites is necessary: *        --a survive skill in C pr

算法导论学习之线性时间排序+排序算法稳定性终结

前面我们学习的几种排序算法都是基于比较的,对于任何输入数据他们都是适用的,其最坏的时间复杂度不会低于nlgn: 但对于一些比较特殊的输入数据,我们可以不采取比较的方法而是采用其它的方法对其进行排序,以达到线性的时间复杂度.下面就来介绍三种这样的算法:计数排序,基数排序,桶排序(因为这几种算法不常见,我只实现了计数排序,其它两种排序用伪代码表示). 一.计数排序 算法思想:给定n个位于0–k之间的数(k是一个不太大的整数),我们可以统计出每个数前面有多少个小于它的数,然后就可以直接确定这个数在数组

常用排序算法的python实现

排序算是编程最基本的算法问题之一了,熟练掌握排序算法也能加深自己对数据结构的理解,也能提高自己的编程能力,以下为个人参考许多大神博客后对常用排序算法的学习总结. 目录: 概述 冒泡排序 直接插入排序 简单选择排序 希尔排序 堆排序 归并排序 快速排序 算法的比较与测试 参考 1. 概述 所谓排序(sorting)就是整理数据的序列,使其按照特定顺序排列的操作.排序在现实生活中(如整理书籍,表格数据等),在计算领域中(如二分查找,图论的最小生成树的Kruskal算法)均有重要意义,所以一种高效的排