(原创)程控增益电路和程控衰减电路(电路,数模)

1.Abstract

    设想一下,要是能用数码控制的方式控制模拟信号输出的幅度,信号输出的增益能得到调节,这样的话,就可以使用数字逻辑来控制模拟信号幅度了,这样数字信号和模拟信号就可以打交道了。模拟信号和数字信号的转换常有两种,模数转换(ADC或者A/D转换)和数模转换(DAC或者D/A转换)。这里的程控增益控制电路和程控衰减电路也是基于数模转换,之所以用增益和衰减,是根据比例系数来说的,若信号输出比大于1,则说明是在放大信号,也就是幅值在增长,所以用增益更确切;反过来,若信号输出比小于1,则说明是在缩小信号,也就是幅值在减小,用衰减更确切。本质上是一样的,两种说法不同而已了。下面具体来看看怎么实现。

2.Content

  2.1 基本模型

    程控电路的基本模型是由运算放大器组成,根据运放虚短和虚断的特点来构成比例放大电路。先看一个一般的放大电路。

FIG2.1 一般比例放大电路模型

    很容易理解,运放管的5脚和6脚电平相同,为低电平,那么输入电流为     箭头方向标明了电流方向。再看输出电流

     箭头方向表明了电流方向,输入电流与输出电流幅值是相等的,若以运放6脚为参考点,等式加入参考方向以后,有

    电路的输出输入的电压比例系数就可以算出来了,

    电路的电压比例系数就可以转换成由电阻来确定了。值得注意的是,输出的电压是负值,也就是要求运放是双电源供电的;若是采用单电源供电的运放,只需将5脚6脚的位置换一换,改成上正下负的就可以了,切记的是放大的幅度不要超过运放的供电电压(运放是不能稳定输出一个比供电电压还要大的信号);不过,在双电源情况将负值信号搬回到正值区间也比较容易,再用一个反向比例放大电路就可以了,这个比较实用,将图画一画。

FIG2.2放大信号反向

    跟第一个电路一样,有反向和放大的功能,输出输入的电压幅值比取决于R4和R3,要是只做反向功能的话,选取R4的阻值等于R3的阻值就可以了。

    电压比例系数的模拟电路模型就分析完成了,延伸一下,过度到主题上去。

    由上述的分析,电压比例系数可以转到输出电阻Ro和输入电阻Ri的阻值上去,改变电压比例系数,通常的做法是固定一个电阻,然后将另外一个电阻设置为可调的。至于固定哪一个电阻,这个根据实际情况吧,为了与后文衔接,固定Ro比较合适。固定Ro后,电压比例系数就与Ri成反向比例关系了。程控比例电路采用这种原理,通过数字信号的转换的阻值(归根结底应该是算电流,不过对电流的控制是电阻,所以也可以用电阻值来衡量),实现电压比例系数的变化;如何用数字信号来改变电阻,这就不得不提到电流型数模转换装置的原理了。

借用别人的一张图(自己画不一定有别人好,最好的办法就是合理借用别人的成果),图片摘自电子工程世界网:http://www.elecfans.com/article/88/171/2009/2009033040169.html

FIG2.3 倒T型电阻网路D/A转换器

    整个电路是转换器的整个部分,右边是一个运放,暂先不关注,最重要是看看左边这个经典的倒T网络。电路设计的很巧妙,每一个垂直的电阻阻值为2R,而水平的电阻阻值为R。从电路右端看进去,每一个节点上的电阻均为R,故每一个支路的电流就特别有规律。若S3合上,则S3上支路的电流是总电流的1/2;若S2合上,则S2支路上的电流时总电流的1/4,依次类推。用数学式子准确表达一下,就是

    等效电阻为

  

     将电流转换成电压和电阻来表示,将左边的式子当做成R的一个系数,很明显可以看出通过改变数字量就可以改变电阻值,换句话说,电阻值可以被数字量量化。有了这个电路结构,控制电路的输出输入比例系数就有可能了,剩下的就是一些电阻值和电路结构的确定。

    经过上述的分析,就是要利用这个倒T型电阻网络搭建电路了,控制电路的输出输入比系数情况有两种情况,一种是比例系数小于1,也就是输出信号比输入信号要小,是在将信号缩小,这称为衰减;一种是比例系数大于1,也就是输出信号比输入信号要大,将信号进行放大,这称为增益。下面进行分别讨论和搭建具体电路

  2.2 程控衰减电路

    程控衰减就是用数字信号控制输出输入的比例系数小于1,即 |Av| <1。由

可知道,要使|Av| <1,若固定的电阻值与T型电阻网络的阻值一样为R,那么T型结构的电阻应该在右端式子的分母上,推导如下式。

    采用8位T型结构电阻构成的电路应为下图所示。

FIG2.4 程控衰减电路

    AD7533内部有一个反馈电阻引出端,阻值与倒T型电阻值一样,故很方便连接。反馈电阻端与运放输出端相连,参考电压端作为输出信号。若要将信号翻转到正值,可以参考FIG2.2电路。值得说明一点的是最大的Vi的取值应该在-VEE以内,否则会对衰减倍数有一定影响。

  2.3 程控增益电路

    程控增益就是用数字信号控制输出输入的比例系数大于1,即 |Av| >1。由

可知,要使|Av| <1,若固定的电阻值与T型电阻网络的阻值一样为R,那么T型结构的电阻应该在右端式子的分母上,推导如下式。

     采用8位T型结构电阻构成的电路应为下图所示。

FIG2.5 程控增益电路

    反馈电阻输出端作为输入信号,电压参考端与运放输出端相连作为输入信号。值得注意的是输入信号的Vi最大增益幅值 Vomax 应该在-VEE以内,也就是

否则会对增益的正确度有一定影响。

    稍微补充一下,现在许多微控制芯片和模数转换芯片都将左半部分的电路集成在芯片内部,留出引线口,就是为了灵活搭建不同的数控电路,以适用于不同的场合。了解其原理以后,还可以搭建其他更多用数字信号控制的电路。

3.Conclusion

    用数字逻辑和模拟信号打交道是很常见的,最为关键的是要了解其原理,然后搭建相应的电路构成有特定功能的电路,除了最为典型的应用以外,还可以尝试看看还有哪些其他的功能,可以发散一下思维逻辑。本文给出了两个典型的例子,做了很系统化的分析,尤其是理论分析方面。不足之处就是没有通过实际的验证,也是限于现在的条件,以后做实验了也将验证部分加入进来,将其写的完整一些。

4.Reference

[1] 电子技术基础 数字部分(第五版)  康华光

[2] 模拟电子技术基础(第四版) 童诗白 华成英

[3] 数字电子技术基础(第五版) 阎石

5.Platform

1. NI Multisim 12.0 Internal Edition

2. MathType V6.8

3. OrCAD Capture CIS V16.3

时间: 2024-11-11 11:19:23

(原创)程控增益电路和程控衰减电路(电路,数模)的相关文章

关于王工小板的电路图中复位电路的错误 和 复位电路原理的学习

王工小板中对于stm32f411芯片的复位电路如下: 实际上这个电路是错误的,经过实测,stm32f411芯片运行时复位引脚为高电平,而在这个电路图里,实际上是把stm32f411芯片运行时复位引脚的电平看为了低电平,按照这个电路,按下按键,会引起电平跳转到高电平从而触发复位,然而实际上并不是这样,stm32f411复位引脚内接上拉电阻(经过实测),所以即使按键松开,其实RST引脚也是高电平,按键按下后,依然是高电平,故这个电路无法触发一个电平的跳变引发复位中断. 对上面说法的证明:目前复位按键

初级模拟电路:4-5 共基放大电路(交流分析)

回到目录 共基放大电路的形式比较简单,其特点是输入阻抗低.输出阻抗高,电压放大倍数可以非常大,但是电流放大倍数略小于1.本小节我们对共基放大电路进行详细的交流分析. 共基放大电路典型如下图所示: 图4-5.01 注意在上图中的各个电压电流符号,有的仅含交流分量,有的同时包含交流分量和直流分量.集电极电阻RC起到了负载电阻的作用,故输出电流io从RC上通过.而C2的作用仅在于隔离直流取出交流输出电压vo,并无电流通过. 在交流分析中,电容C1和C2可视为短路,直流电压源可视为直接通地,将上图中的B

如何区分电压串联负反馈电路和电流串联负反馈电路(转)

负反馈放大电路从输出端的取样方式可以分为电压反馈和电流反馈 从输入端的接入电路的方式可以分为串联反馈和并联反馈. 最简单的区分方法是:若输出端的反馈取样点跟输出在同一点的话就是电压反馈,不在同一点的话就是电流反馈:在输入端,如果反馈信号和输入信号接在同一输入端的话就是以电流的形式参与计算,是电流负反馈,如果反馈信号和输入信号接在放大电路的不同端子上的话,那么就是以电压形式参与运算,是电压负反馈.  将负载短路,也就是将RL短路,如果反馈信号还存在,就是电流负反馈:如果反馈信号为0,就是电压负反馈

基于单稳态触发电路的打印头电源保护电路

一.工作原理 MCU正常工作时产生一个持续的(或模拟PWM等)脉冲信号,驱动74HC123输出高电平脉冲,脉冲驱动负载电源模块,模块为打印头或者步进电机等供电电源. 一旦MCU异常或者程序崩溃,将不能发出持续的脉冲给到74HC123输入,从而切断电源,功能类似于硬件中“看门狗”. 74HC123D真值表 二.硬件原理图 原文地址:https://www.cnblogs.com/lewismountain/p/11017113.html

总结:电路及电路设计经验技巧

电路及电路设计经验技巧大合集,全部是文档文件,来看看有没有你需要的资料?,把好几个压缩包的文件名称给copy下来了,压缩得有点大,文件都放在闯客网技术论坛上了,需要哪个资料的,自行下载吧,同时献上我们的交流群:813238832资料链接:https://bbs.usoftchina.com/thread-206874-1-1.html 文件列表:BUCKBOOST电路原理分析.docxCAN总线接口电路设计注意事项.docxDC-DC升压电路.docxFPGACPLD数字电路设计经验分享.doc

数字集成电路设计经验技巧分享

废话不多说,直接贴出电路及电路设计经验技巧大合集84个资料的文件列表,太多了,只显示一部分吧,有需要的朋友可以到闯客网技术论坛下载,同时可以加入我们的技术交流裙:613377058,无偿共享,在线解答各种技术问题.资料链接:https://bbs.usoftchina.com/thread-206874-1-1.html 文件列表:BUCKBOOST电路原理分析.docxCAN总线接口电路设计注意事项.docxDC-DC升压电路.docxFPGACPLD数字电路设计经验分享.docxMIC电路工

电路基础知识

1. 请列举您知道的电阻.电容.电感品牌(最好包括国内.国外品牌). 电阻: 美国:AVX.VISHAY威世日本:KOA兴亚.Kyocera京瓷.muRata村田.Panasonic松下.ROHM罗姆.susumu.TDK 台湾: LIZ丽智.PHYCOM飞元.RALEC旺诠.ROYALOHM厚生.SUPEROHM美隆.TA-I大毅.TMTEC泰铭.TOKEN德键.TYOHM幸亚.UniOhm厚声.VITROHM.VIKING光颉.WALSIN华新科.YAGEO国巨新加坡:ASJ 中国:FH风华

低噪声APD偏置电路

低噪声APD偏置电路 APD电源摘要:该电路产生并控制光通信中雪崩光电二极管(APD)的低噪声偏置电压.该可变电压通过控制APD的雪崩增益,优化光纤接收器的灵敏度特性.该电路采用低噪声.固定频率PWM升压转换器,带有一个工作在非连续电流模式的电感.内部MOSFET的低开关速率降低了高频电压毛刺,降低了噪声.本文给出了完备的电路,建议采用扩展电路.扩展电路采用ADC进行数字控制,允许微控制器读取热敏电阻的值.并根据查找表进行温度补偿. 雪崩光电二极管(APD)被作为接收器探头用于光通信中.APD的

MP1584电源IC和BUCK电路分析

MP1584美国芯源半导体http://www.monolithicpower.com/  生产的step-down converter 降压转换器.其核心是buck转换! 下面是对BUCK电路进行分析. buck电路也属于开关电源.通过在MOS管Q上加上开关信号PWM,控制开关管的导通与关断,是电感和电容充放电,这里采用的二极管是肖特基二极管,其特点是快速恢复.相对于普通的二极管,普通的二极管会因为开关频率高产生漏电发热大而被烧毁. 科普一下,在开关电源中,单管DC/DC转换器共有六种,即降压