蓝桥杯 历届试题 高僧斗法

历届试题 高僧斗法

时间限制:1.0s 内存限制:256.0MB

问题描述

  古时丧葬活动中经常请高僧做法事。仪式结束后,有时会有“高僧斗法”的趣味节目,以舒缓压抑的气氛。

  节目大略步骤为:先用粮食(一般是稻米)在地上“画”出若干级台阶(表示N级浮屠)。又有若干小和尚随机地“站”在某个台阶上。最高一级台阶必须站人,其它任意。(如图1所示)

  两位参加游戏的法师分别指挥某个小和尚向上走任意多级的台阶,但会被站在高级台阶上的小和尚阻挡,不能越过。两个小和尚也不能站在同一台阶,也不能向低级台阶移动。

  两法师轮流发出指令,最后所有小和尚必然会都挤在高段台阶,再也不能向上移动。轮到哪个法师指挥时无法继续移动,则游戏结束,该法师认输。

  对于已知的台阶数和小和尚的分布位置,请你计算先发指令的法师该如何决策才能保证胜出。

输入格式

  输入数据为一行用空格分开的N个整数,表示小和尚的位置。台阶序号从1算起,所以最后一个小和尚的位置即是台阶的总数。(N<100, 台阶总数<1000)

输出格式

  输出为一行用空格分开的两个整数: A B, 表示把A位置的小和尚移动到B位置。若有多个解,输出A值较小的解,若无解则输出-1。

样例输入

1 5 9

样例输出

1 4

样例输入

1 5 8 10

样例输出

1 3

这道题用到的就是nim取子游戏的变形!

这些是nim博弈的资料:

尼姆博奕(Nimm Game):
有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首
先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是
(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一
下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情
形。

   计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示
这种运算。这种运算和一般加法不同的一点是1+1=0。先看(1,2,3)的按位模2加的结
果:
1 =二进制01
2 =二进制10
3 =二进制11 (+)
———————
0 =二进制00 (注意不进位)
    对于奇异局势(0,n,n)也一样,结果也是0。
    任何奇异局势(a,b,c)都有a(+)b(+)c =0。
如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b
< c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果:
a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)即可。

    例1。(14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达
到奇异局势(14,21,27)。
    例2。(55,81,121),55(+)81=102,121-102=19,所以从121中拿走19个物品
就形成了奇异局势(55,81,102)。
    例3。(29,45,58),29(+)45=48,58-48=10,从58中拿走10个,变为(29,4
5,48)。
    例4。我们来实际进行一盘比赛看看:
        甲:(7,8,9)->(1,8,9)奇异局势
        乙:(1,8,9)->(1,8,4)
        甲:(1,8,4)->(1,5,4)奇异局势
        乙:(1,5,4)->(1,4,4)
        甲:(1,4,4)->(0,4,4)奇异局势
        乙:(0,4,4)->(0,4,2)
        甲:(0.4,2)->(0,2,2)奇异局势
        乙:(0,2,2)->(0,2,1)
        甲:(0,2,1)->(0,1,1)奇异局势
        乙:(0,1,1)->(0,1,0)
        甲:(0,1,0)->(0,0,0)奇异局势
        甲胜。

面对奇异局势则必败!

这道题中,最难的是构造这个取子游戏的模型。

对于 1 5 8 10这个样例,我们把1 5分为一组,8 10分为一组,我们发现,无论5怎么向前移动,后面的1紧跟上来就可以了!

然而,8怎么移动,5移动,然后1又可以跟着移动,所以说:

**

你移动8是没有意义的!

**

所以我们只需要分析每一组的第二个怎么移动!

关于怎么样可以得到最小的解,就是直接枚举,从最小的情况枚举出来之后,如果该情况的nim答案是0,则说明你移动这一步,对方面对奇异局势,必败!

则输出!

#include<cstdio>
#include<cstring>

const int maxn=1005;
int a[maxn];
int b[maxn];
int c[maxn];
int d[105];
char str[maxn<<1];

bool solve(int n){
    memset(b,0,sizeof(b));
    int coun=0;
    for(int i=1;i<=n;++i){
        if(a[i])
            d[coun++]=i;//printf("%d ",d[coun-1]);
    }
//  putchar(10);
    d[coun]=d[coun-1]+1;
    int ans=0;
    for(int i=1;i<=coun;i+=2){
        ans^=(d[i]-d[i-1]-1);
    }
//  putchar(10);
    return ans==0;
}
int main(){
    gets(str);
    int len=strlen(str);
    int coun=0;
    for(int i=0;i<len;){
        while(str[i]<‘0‘||str[i]>‘9‘){
            ++i;
        }

            int t=0;
            for(;i<len;++i){
                if(str[i]>=‘0‘&&str[i]<=‘9‘){
                    t=t*10+str[i]-‘0‘;
                }else break;
            }
            a[coun++]=t;
    }
    int n=a[coun-1];
    a[coun]=a[coun-1]+1;
    int ans=0;
    for(int i=1;i<=coun;i+=2){
        b[i]=a[i]-a[i-1]-1;
        ans^=b[i];
    }
//  printf("ans=%d\n",ans);
    if(!ans){
        printf("-1\n");
    }else{
        memset(c,0,sizeof(c));
        for(int i=0;i<coun;++i){
            c[a[i]]=1;
        }
//          printf("n=%d\n",n);
        bool ans=true;
        for(int i=1;i<=n&&ans;++i){
            memcpy(a,c,sizeof(c));
            for(int j=i+1;j<=n&&ans;++j){
                if(!a[j]){
//                  printf("i=%d  j=%d\n",i,j);
                    a[i]=0;
                    a[j]=1;
                    if(solve(n)){
                        printf("%d %d\n",i,j);
                        ans=false;
                        break;
                    }
                    a[i]=1;
                    a[j]=0;
                }else break;
            }
        }
    }
    return 0;
}
时间: 2024-10-13 08:22:46

蓝桥杯 历届试题 高僧斗法的相关文章

历届试题 高僧斗法(博弈)

历届试题 高僧斗法 时间限制:1.0s   内存限制:256.0MB 问题描述 古时丧葬活动中经常请高僧做法事.仪式结束后,有时会有“高僧斗法”的趣味节目,以舒缓压抑的气氛. 节目大略步骤为:先用粮食(一般是稻米)在地上“画”出若干级台阶(表示N级浮屠).又有若干小和尚随机地“站”在某个台阶上.最高一级台阶必须站人,其它任意.(如图1所示) 两位参加游戏的法师分别指挥某个小和尚向上走任意多级的台阶,但会被站在高级台阶上的小和尚阻挡,不能越过.两个小和尚也不能站在同一台阶,也不能向低级台阶移动.

蓝桥杯历届试题 地宫取宝 dp or 记忆化搜索

问题描述 X 国王有一个地宫宝库.是 n x m 个格子的矩阵.每个格子放一件宝贝.每个宝贝贴着价值标签. 地宫的入口在左上角,出口在右下角. 小明被带到地宫的入口,国王要求他只能向右或向下行走. 走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿). 当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明. 请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝. 输入格式 输入一行3个整数,用空格分开:n

蓝桥杯 历届试题 题目总结

后天就是蓝桥杯省赛了,今天总结一下这段时间做的蓝桥杯历届试题,还是一个一个题目的来吧!!!!!! 1,历届试题 矩阵翻硬币 这个题目说真的,我不会,在网上看了某神牛的题解答案为 ans=sqrt(n)*sqrt(m),具体怎么证明的我也不知道 2,历届试题 兰顿蚂蚁 这个题目怎么说呢,应该是送分题,直接模拟就可以了,这里就不说了. 3, 历届试题 分糖果 这个题目好像之前在哪里做过,也是一道模拟题,弄两个数组搞一下就可以了 下面是代码 #include<bits/stdc++.h> using

蓝桥杯-历届试题之大臣的旅费

历届试题 大臣的旅费 时间限制:1.0s   内存限制:256.0MB 问题描述 很久以前,T王国空前繁荣.为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市. 为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达.同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的. J是T国重要大臣,他巡查于各大城市之间,体察民情.所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情.他有一个钱袋,用于

蓝桥杯 历届试题 连号区间数

历届试题 连号区间数 时间限制:1.0s   内存限制:256.0MB 问题描述 小明这些天一直在思考这样一个奇怪而有趣的问题: 在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是: 如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的"连续"数列,则称这个区间连号区间. 当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助. 输入格式 第一行是一个正整数N (1 &

蓝桥杯 历届试题 带分数 DFS最容易理解版,内有解析

历届试题 带分数 时间限制:1.0s   内存限制:256.0MB 问题描述 100 可以表示为带分数的形式:100 = 3 + 69258 / 714. 还可以表示为:100 = 82 + 3546 / 197. 注意特征:带分数中,数字1~9分别出现且只出现一次(不包含0). 类似这样的带分数,100 有 11 种表示法. 输入格式 从标准输入读入一个正整数N (N<1000*1000) 输出格式 程序输出该数字用数码1~9不重复不遗漏地组成带分数表示的全部种数. 注意:不要求输出每个表示,

蓝桥杯 历届试题 大臣的旅费 DFS两次

历届试题 大臣的旅费 时间限制:1.0s   内存限制:256.0MB 问题描述 很久以前,T王国空前繁荣.为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市. 为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达.同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的. J是T国重要大臣,他巡查于各大城市之间,体察民情.所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情.他有一个钱袋,用于

蓝桥杯-历届试题-公式求值

历届试题 公式求值 时间限制:1.0s   内存限制:256.0MB 问题描述 输入n, m, k,输出下面公式的值. 其中C_n^m是组合数,表示在n个人的集合中选出m个人组成一个集合的方案数.组合数的计算公式如下. 输入格式 输入的第一行包含一个整数n:第二行包含一个整数m,第三行包含一个整数k. 输出格式 计算上面公式的值,由于答案非常大,请输出这个值除以999101的余数. 样例输入 313 样例输出 162 样例输入 201010 样例输出 359316 数据规模和约定 对于10%的数

蓝桥杯 历届试题 PREV-34 矩阵翻硬币

历届试题 矩阵翻硬币 时间限制:1.0s   内存限制:256.0MB 问题描述 小明先把硬币摆成了一个 n 行 m 列的矩阵. 随后,小明对每一个硬币分别进行一次 Q 操作. 对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转. 其中i和j为任意使操作可行的正整数,行号和列号都是从1开始. 当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹--所有硬币均为正面朝上. 小明想知道最开始有多少枚硬币是反面朝上的.于是,他向他的好朋友小M寻求帮助.