Radar
时间限制:1000 ms | 内存限制:65535 KB
难度:3
- 描述
- Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the
other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in
the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.- 输入
- The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage
of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.The input is terminated by a line containing pair of zeros
- 输出
- For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.
- 样例输入
-
3 2 1 2 -3 1 2 1 1 2 0 2 0 0
- 样例输出
-
Case 1: 2 Case 2: 1
-
思路:
-
简单的贪心,只要想到将二维转化为一维的数轴就和普通的贪心一样。
-
我的代码:
-
#include<iostream> #include <cstdio> #include <cmath> #include <algorithm> using namespace std; struct S { double L,R; }a[1010]; bool cmp(const S& a ,const S& b) { return a.R<b.R; } int main() { int n,m,i,j,flag,count=0; double x,y,k; while (~scanf("%d %d",&n,&m)) { count++; if (n==0&&m==0) { break; } for (i=0,flag=0;i<n;++i) { scanf("%lf %lf",&x,&y); if (y>m) { flag=1; } a[i].L = x-sqrt(m*m-y*y); a[i].R = x+sqrt(m*m-y*y); } if (flag) { printf("-1\n"); continue; } sort(a,a+n,cmp); k=a[0].R; for (i=0,j=1;i<n;++i) { if (k<a[i].L) { j++; k=a[i].R; } } printf("Case %d: ",count); printf("%d\n",j); } return 0; }
标程:
-
#include<iostream> #include<algorithm> #include<climits> #include<cmath> using namespace std; int r; struct Island { double x,y; double Left() const {if(y>r)throw -1;return x-sqrt(r*r-y*y);} double Right() const {if(y>r)throw -1;return x+sqrt(r*r-y*y);} }; const int MAX=1010; Island lands[MAX]; bool sortby(const Island& i1,const Island& i2) { return i1.Right()<i2.Right(); } int main() { int n,num,cn=0; double start; while(cin>>n>>r) { num=0;start=-1e100; try{ if(n==0 && r==0) break; for(int i=0;i!=n;++i) { cin>>lands[i].x>>lands[i].y; } sort(lands,lands+n,sortby); for(int i=0;i!=n;i++) if(lands[i].Left()>start) {start=lands[i].Right();++num;} cout<<"Case "<<++cn<<": "<<num<<endl; } catch(...) { cout<<"Case "<<++cn<<": "<<-1<<endl; } } }
时间: 2024-10-12 06:46:55