图像融合(五)-- 梯度金字塔

  基于梯度金字塔(Gradient Pyramid,GP)分解的图像融合算法。GP 也是一种基于高斯金字塔的多尺度分解算法。通过对高斯金字塔每层图像进行梯度算子运算,便可获得图像的 GP表示。GP 每层分解图像都包含水平、垂直和两个对角线四个方向的细节信息,能更好地提取出图像的边缘信息,提高了稳定性和抗噪性。具有方向性的梯度塔形分解能够很好地提供图像的方向边缘和细节信息。

1、原理阐述

(1)得到高斯金字塔(如上)

(2)对图像高斯金字塔的各分解层(最高层除外)分别进行梯度方向滤波,便可得到梯度塔形分解:

这里•为卷积运算,DL K表示第L层第k方向梯度塔形图像,GL 为图像的高斯金字塔的第L层图像,dK表示第k方向梯度滤波算子,定义为:

  经过 d1、d2、d3、d4对高斯金字塔各层进行方向梯度滤波,在每一分解层上(最高层除外)均可得到包含水平、垂直以及两个对角线方向细节信息的4个分解图像。可见图像的梯度塔形分解不仅是多尺度、多分辨率分解,而且每一分解层(最高层除外)又由分别包含 4个方向细节信息的图像组成。

  这里跟上面不同的就是每一层是独立的,不需要涉及到上一层的上采样结果。对应层的Gl与3*3的核做卷积,在加上Gl的值之后取相应方向的值,就可以生成对应方向的系数了。

(3)重构

  对金字塔图像每一层各方向分别融合后,就需要由梯度金字塔重构原图像,须引入FSD 拉普拉斯金字塔作为中间结果,即将梯度金字塔转换为拉普拉斯金字塔,再由拉普拉斯金字塔重构原图像,其构建过程如下:

  1、将方向梯度金字塔转换为方向拉普拉斯金字塔(FSD型)filter-subtract-decimate。设 FSD型金字塔的第L层图像为LL,

  2、将FSD 拉普拉斯金字塔图像变换为拉普拉斯金字塔图像。

  注意I不是单位矩阵,只是中间一个元素为1。(不懂)

  3、由拉普拉斯金字塔重构原图像将GL内插值进行放大,使放大后的图像尺寸与GL - 1的尺寸相同。这里就和前面的一样(pyrup)。

2、融合应用

  采用基于区域的融合规则,基于区域的融合方法的基本思想是:在对某一分解层图像进行融合处理时,为了确定融合后图像的像素,不仅要考虑参加融合的源图像中对应的各像素,而且要考虑参加融合的像素的局部领域。即比较源图像的某方面特征,从而动态地选这方面特征突出的源图像组成融合结果。

  梯度是一个矢量,指向边缘法线方向上取得局部的最大值的方向,和图像的边缘方向总 是正交(垂直)的。所以基于梯度的滤波器,又称边缘算子。图像经梯度滤波器滤波后,突出了相邻点间灰度级的变化,达到增强边缘的目的。以区域各点灰度值之和为特征量,进行源图像分解层的融合时,来自哪个区域的特征的值大,就将该区域中心像素点的灰度值作为融合后图像分解层上该位置的像素灰度值。这样就能很好的提取图像的边缘信息。

融合的基本步骤为:

1、对每一源图像分别进行梯度塔形分建立图像的梯度金字塔。

2、对图像梯度金字塔的各分解层分别进行融合处理;不同的分解层、不同方向细节图像采用不同的融合算子进行融合处理,最终得到融合后图像的梯度金字塔。

3、对融合后所得梯度金字塔进行逆塔形变换(即进行图像重构),所得到的重构图像即融合图像对于融合规则可以选用基于区域信息的,也可以简单的取最大值的方法。

?

时间: 2024-11-10 13:18:23

图像融合(五)-- 梯度金字塔的相关文章

梯度、散度和旋度及在图像处理中的应用(图像融合)

 对于有些人,看这些枯燥的公式符号是件痛苦的事情:但痛苦后总会有所欣喜,如果你充分利用它的话,你更能体会到他的美妙:先来几张效果图,激发你学习数学的欲望: 注释:图像融合效果,分别应用了不同的算法 在图像图形处理中, 梯度.散度和旋度 有很重要的作用,比如图像修复中的解泊松方程,目标跟踪等等,可以说是他们无处不在. 来句废话:可能有些人,对于数学符号里面倒三角 正三角 符号的意思?与读法感到迷惑,现稍作解释: △二次函数根的判别式或者指三角形 ▽读Nabla,奈不拉,也可以读作"Del&qu

图像融合(三)-- 拉普拉斯金字塔

2.拉普拉斯金字塔融合 图像金字塔方法的原理是:将参加融合的的每幅图像分解为多尺度的金字塔图像序列,将低分辨率的图像在上层,高分辨率的图像在下层,上层图像的大小为前一层图像大小的1/4.层数为0,1,2……N.将所有图像的金字塔在相应层上以一定的规则融合,就可得到合成金字塔,再将该合成金字塔按照金字塔生成的逆过程进行重构,得到融合金字塔.这个总的思路就是一下所有基于金字塔融合的算法过程,不同点就在于分解构造的金字塔不同,每层的融合规则不一样,重构的方法不同而已.金字塔方法最先实现了这种思想,之后

图像融合(四)-- 对比度金字塔

对比度金字塔融合 在考虑人类视觉系统对局部对比度敏感这一视觉特性的基础上,提出了基于对比度金字塔(Contrast Pyramid,CP)分解的图像融合算法.CP 分解类似于 LP 分解,但它的每一层图像是高斯金字塔相邻两层图像的比率. CP 融合算法应用于合成孔径雷达和前视红外图像融合. 1.原理阐述 ?   (1)得到高斯金字塔(如上篇) (2)对比度金字塔 用高斯金字塔得到上采样并高斯卷积之后的预测图像*Gl,*Gl的尺寸和Cl-1相同,即经过放大算子的处理(pyrup).图像的对比度通常

图像融合文章系列汇总

这是实验室项目的资料汇总,一方面便于自己整理,理清思路,另一方面让大家对图像融合有个大概的了解.以后项目还没有完结,以后还会有所补充. 图像融合文章系列汇总: 图像融合(一)-- 概述 图像融合(二)-- 简单加权融合 图像融合(三)-- 拉普拉斯金字塔 图像融合(四)-- 对比度金字塔 图像融合(五)-- 梯度金字塔 图像融合(六)-- 小波融合

切割图像(五)主动轮廓模型Snake简要模型

切割图像(五)主动轮廓模型Snake简要模型 [email protected] http://blog.csdn.net/zouxy09 在"图像切割之(一)概述"中咱们简单了解了眼下主流的图像切割方法.以下咱们主要学习下基于能量泛函的切割方法.这里学习下Snake模型简单的知识,Level Set(水平集)模型会在后面的博文中说到. 基于能量泛函的切割方法: 该类方法主要指的是活动轮廓模型(active contour model)以及在其基础上发展出来的算法,其基本思想是使用连续

图像融合算法(归纳篇)

综合关注几篇的papers的图像融合算法,对整个过程作归纳,与大家分享(^_^).基于sift特征的全景拼接方法的整个过程的大致流程: 对需拼接的图像进行预处理,主要是几何校正和消噪.对于几何校正,因为我们考虑的是视频的实时处理,那么我们只需考虑摄像机的所有运动形式,其中包含8个自由度,可用投影变换来表示.H=[m0 m1 m2;m3 m4 m5;m6 m7 1],考虑到它的算法复杂度已经有n的3次方,我们可以考虑通过控制摄像机的运动方式来减少复杂度,比如令摄像机只有平移旋转和缩放,即仿射变换,

图像融合算法(感应篇)

复按照几个papers图像融合算法,诱导整个过程,与您分享(^_^). 基于sift的全景拼接方法的整个过程的大致流程: 对需拼接的图像进行预处理.主要是几何校正和消噪.对于几何校正.因为我们考虑的是视频的实时处理,那么我们仅仅需考虑摄像机的全部运动形式,当中包括8个自由度.可用投影变换来表示.H=[m0 m1 m2;m3 m4 m5;m6 m7 1],考虑到它的算法复杂度已经有n的3次方.我们能够考虑通过控制摄像机的运动方式来减少复杂度,比方令摄像机仅仅有平移旋转和缩放,即仿射变换,减少了一次

图像融合(六)-- 小波融合

基于小波的融合(wavelet) 小波变换的固有特性使其在图像处理中有如下优点:完善的重构能力,保证信号在分解过程中没有信息损失和冗余信息:把图像分解成平均图像和细节图像的组合,分别代表了图像的不同结构,因此容易提取原始图像的结构信息和细节信息:小波分析提供了与人类视觉系统方向相吻合的选择性图像. 离散小波变换(Discrete Wavelet Transform, DWT).DWT的函数基由一个称为母小波或分析小波的单一函数通过膨胀和平移获得.因而,DWT同时具有时域和频域分析能力,与一般的金

从泊松方程的解法,聊到泊松图像融合

从泊松方程的解法,聊到泊松图像融合 成指导 ? 字节跳动 算法工程师 283 人赞同了该文章 2004 年 SIGGRAPH 上,Microsoft Research UK 有篇经典的图像融合文章<Poisson Image Editing>.先看看其惊人的融合结果(非论文配图,本人实验结果): 这篇文章的实现,无关目前算法领域大火的神经网络,而是基于泊松方程推导得出. 泊松方程是什么? 很多朋友比较熟悉概率论里面的泊松分布.泊松方程,也是同一个数学家泊松发明的.但却和泊松分布没有什么关系,是