HDU4565 So Easy! 矩阵高速幂外加数学

easy 个屁啊,一点都不easy,题目就是要求公式的值,但是要求公式在最后的取模前的值向上取整。再取模,无脑的先试了高速幂 double  fmod来做,结果发现是有问题的。这题要做肯定得凑整数,凑整  题目给 a+√b 那么加上a-√b就能够了。但是这样加上后面怎么处理还得减去。想了半年也想不出来。

原来用了负数的共轭思想。还有就是题目给的b的范围 是 ((a-1)*(a-1),a*a)。所以 a-√b的值的 不管多少次方 的值都是小于1的,所以对于原式子 改装成

((a + √b) ^n+ (a - √b)^n)%MOD,这样由于(a + √b) ^n的值在取模前要向上取整么,所以加上了 (a - √b)^n 就是 答案了,特别变态。还得看b的范围来行事

最后在用 (a + √b) ^n+ (a - √b)^n  乘以 (a + √b)+ (a - √b)就能推出   (a + √b) ^(n+1) + (a - √b) ^(n+1) = 2 * a *((a + √b) ^n + (a - √b) ^n) - (a*a-b)*((a + √b) ^(n-1) + (a - √b) ^(n-1))

这样字的话 就有递推式可言了,就能构造矩阵来做了。最后还漏了负数的情况 ,搞的我敲了好几个小时。数学弱爆了。

#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set>

#define ll long long

#define eps 1e-8

#define inf 0xfffffff

const ll INF = 1ll<<61;

using namespace std;

//vector<pair<int,int> > G;
//typedef pair<int,int > P;
//vector<pair<int,int> > ::iterator iter;
//
//map<ll,int >mp;
//map<ll,int >::iterator p;

typedef struct Node {
	int m[2][2];
}Matrix;

Matrix per;

int MOD;

void init() {
	for(int i=0;i<2;i++)
		for(int j=0;j<2;j++)
			per.m[i][j] = (i == j);

}

Matrix multi(Matrix a,Matrix b) {
	Matrix c;
	for(int i=0;i<2;i++) {
		for(int j=0;j<2;j++) {
			c.m[i][j] = 0;
			for(int k=0;k<2;k++)
				c.m[i][j] += a.m[i][k] * b.m[k][j];
			c.m[i][j] %= MOD;
			/*if(c.m[i][j] < 0) c.m[i][j] += MOD;*/
		}
	}
	return c;
}

Matrix quick(Matrix p,int k) {
	Matrix ans = per;
	while(k) {
		if(k&1) {
			ans = multi(ans,p);
			k--;
		}
		else {
			k >>= 1;
			p = multi(p,p);
		}
	}
	return ans;
}

int main() {
	int a,b,n;
	init();
	while(scanf("%d %d %d %d",&a,&b,&n,&MOD) == 4) {
		Matrix ans;
		memset(ans.m,0,sizeof(ans.m));
		ans.m[1][0] = 2;
		ans.m[0][0] = 2 * a;
		if(n == 1) {
			printf("%d\n",ans.m[0][0]%MOD);
			continue;
		}
		Matrix tmp;
		memset(tmp.m,0,sizeof(tmp.m));
		tmp.m[0][0] = 2 * a%MOD;
		tmp.m[0][1] = (-(a * a%MOD - b) + MOD)%MOD;//靠这里有负数要注意
		tmp.m[1][0] = 1;
		tmp.m[1][1] = 0;
		/*Matrix bb = multi(tmp.tmp)*/
		tmp = quick(tmp,n);
		ans = multi(tmp,ans);
		printf("%d\n",ans.m[1][0]);
	}
	return 0;
}
时间: 2024-12-25 12:13:40

HDU4565 So Easy! 矩阵高速幂外加数学的相关文章

HDU4565 So Easy! 矩阵快速幂外加数学

easy 个屁啊,一点都不easy,题目就是要求公式的值,但是要求公式在最后的取模前的值向上取整,再取模,无脑的先试了快速幂 double  fmod来做,结果发现是有问题的,这题要做肯定得凑整数,凑整  题目给 a+√b 那么加上a-√b就可以了,可是这样加上后面怎么处理还得减去,想了半年也想不出来, 原来用了负数的共轭思想,还有就是题目给的b的范围 是 ((a-1)*(a-1),a*a),所以 a-√b的值的 无论多少次方 的值都是小于1的,所以对于原式子 改装成 ((a + √b) ^n+

HDU3117-Fibonacci Numbers(矩阵高速幂+log)

题目链接 题意:斐波那契数列,当长度大于8时.要输出前四位和后四位 思路:后四位非常easy,矩阵高速幂取模,难度在于前四位的求解. 已知斐波那契数列的通项公式:f(n) = (1 / sqrt(5)) * (((1 + sqrt(5)) / 2) ^ n - ((1 + sqrt(5)) / 2) ^ n).当n >= 40时((1 + sqrt(5)) / 2) ^ n近似为0. 所以我们如果f(n) = t * 10 ^ k(t为小数),所以当两边同一时候取对数时.log10(t * 10

HDU 5411 CRB and puzzle (Dp + 矩阵高速幂)

CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 483    Accepted Submission(s): 198 Problem Description CRB is now playing Jigsaw Puzzle. There are  kinds of pieces with infinite

HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出k,b,n,M,问( f(g(0)) + f(g(1)) + ... + f(g(n)) ) % M的值. 分析: 把斐波那契的矩阵带进去,会发现这个是个等比序列. 推倒: S(g(i)) = F(b) + F(b+k) + F(b+2k) + .... + F(b+nk) // 设 A = {1,1,

HDOJ 4686 Arc of Dream 矩阵高速幂

矩阵高速幂: 依据关系够建矩阵 , 高速幂解决. Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total Submission(s): 2164    Accepted Submission(s): 680 Problem Description An Arc of Dream is a curve defined by following fun

HDU 4965 Fast Matrix Calculation(矩阵高速幂)

HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次.能够变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个仅仅有6x6.就能够用矩阵高速幂搞了 代码: #include <cstdio> #include <cstring> const int N = 1005; const int M = 10; int n, m; int A[N][M], B[M][N], C[M][M], CC[N

hdu 5318 The Goddess Of The Moon 矩阵高速幂

链接:http://acm.hdu.edu.cn/showproblem.php?pid=5318 The Goddess Of The Moon Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 438    Accepted Submission(s): 150 Problem Description Chang'e (嫦娥) is

hdu 5411 CRB and Puzzle 矩阵高速幂

链接 题解链接:http://www.cygmasot.com/index.php/2015/08/20/hdu_5411/ 给定n个点 常数m 以下n行第i行第一个数字表示i点的出边数.后面给出这些出边. 问:图里存在多少条路径使得路径长度<=m.路径上的点能够反复. 思路: 首先能得到一个m*n*n的dp.dp[i][j]表示路径长度为i 路径的结尾为j的路径个数 . 答案就是sigma(dp[i][j]) for every i from 1 to m, j from 1 to n; 我们

HDU 2604 Queuing 矩阵高速幂

QueuingTime Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2483    Accepted Submission(s): 1169 Problem Description Queues and Priority Queues are data structures which are known to most computer s