POJ 2528 Mayor's posters(线段树区间染色+离散化或倒序更新)

Mayor‘s posters

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 59239   Accepted: 17157

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters‘ size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

题目链接:POJ 2528

这题离散化不是很难容易想到我感觉麻烦的是对于query这个函数的查询方式,做了很久的一道题,很经典但是挺坑,数据虽说不是很严,一些不严谨的离散化也可以过,但数据本身应该是正确的。

我用的是color=-1来表示无颜色

离散化我用的方法比较麻烦但感觉比较好理解,先给出现过的所有点排序,然后由于1~2+6~10离散之后会变成1~2 3~4 中间少了一段,因此对排序之后的数组遍历若出现pos[i]-pos[i-1]>1,则在数组末尾加上pos[i]-1(其他在pos[i]~pos[i-1]之间的数任意均可),然后再次对数组算上排序并去重unique。然后用lower_bound把坐标映射离散一下即可。

统计颜色个数,直接从大区间1~pos.size开始查询,直接暴力查询掉所有的叶子节点就行或者判断当前是否有颜色,有颜色就直接返回不用pushdown但是这种做法会超过建树的区间导致color出现0,特判一下0就行。

另外一种来自某kuangbin大牛(膜Orz...)的做法是倒序更新,倒着帖只要当前范围没被全部覆盖就说明张贴成功大,但是更新时要注意,每一次更新必须要pushup到顶端,不然下一次若更新到比较浅的层则会误认为当前区间可更新实际是没有传递信息上来(调试了大半个下午)。

如果用正序写过的推荐尝试一下写逆序更新,速度也比正序快一丢丢

暴力统计代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=40010;
const int M=10010;
struct info
{
    int l,r;
}node[M];
struct seg
{
    int l,mid,r;
    int color;
}T[N<<2];
int vis[M],kind;
vector<int>pos;
void pushdown(int k)
{
    if(T[k].color!=-1)
    {
        T[LC(k)].color=T[k].color;
        T[RC(k)].color=T[k].color;
        T[k].color=-1;
    }
}
void build(int k,int l,int r)
{
    T[k].l=l;
    T[k].r=r;
    T[k].mid=MID(l,r);
    T[k].color=-1;
    if(l==r)
        return ;
    build(LC(k),l,T[k].mid);
    build(RC(k),T[k].mid+1,r);
}
void update(int k,int l,int r,int c)
{
    if(l<=T[k].l&&r>=T[k].r)
        T[k].color=c;
    else
    {
        pushdown(k);
        if(r<=T[k].mid)
            update(LC(k),l,r,c);
        else if(l>T[k].mid)
            update(RC(k),l,r,c);
        else
            update(LC(k),l,T[k].mid,c),update(RC(k),T[k].mid+1,r,c);
    }
}
void query(int k,int l,int r)
{
    if(T[k].l==T[k].r)//或者写成T[k].color!=-1
    {
        int color=T[k].color;
        if(color!=-1&&!vis[color])//按照上面的这里就要多加一个color!=0
        {
            vis[color]=1;
            ++kind;
        }
        return ;
    }
    else
    {
        pushdown(k);
        if(r<=T[k].mid)
            query(LC(k),l,r);
        else if(l>T[k].mid)
            query(RC(k),l,r);
        else
            query(LC(k),l,T[k].mid),query(RC(k),T[k].mid+1,r);
    }
}
void init()
{
    CLR(vis,0);
    kind=0;
    pos.clear();
}
int main(void)
{
    int tcase,n,i,cnt;
    scanf("%d",&tcase);
    while (tcase--)
    {
        scanf("%d",&n);
        cnt=0;
        init();
        for (i=0; i<n; ++i)
        {
            scanf("%d%d",&node[i].l,&node[i].r);
            pos.push_back(node[i].l);
            pos.push_back(node[i].r);
        }
        sort(pos.begin(),pos.end());
        int SZ=pos.size();
        for (i=1; i<SZ; ++i)
            if(pos[i-1]<pos[i]-1)
                pos.push_back(pos[i]-1);

        sort(pos.begin(),pos.end());

        pos.erase(unique(pos.begin(),pos.end()),pos.end());
        for (i=0; i<n; ++i)
        {
            node[i].l=lower_bound(pos.begin(),pos.end(),node[i].l)-pos.begin()+1;
            node[i].r=lower_bound(pos.begin(),pos.end(),node[i].r)-pos.begin()+1;
        }
        build(1,1,pos.size());
        for (i=0; i<n; ++i)
            update(1,node[i].l,node[i].r,i+1);
        query(1,1,pos.size());
        printf("%d\n",kind);
    }
    return 0;
}

  

倒序更新代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=40010;
const int M=10010;
struct info
{
    int l,r;
}node[M];
struct seg
{
    int l,mid,r;
    int color;
}T[N*8];
int kind;
vector<int>pos;
void pushup(int k)
{
    if(T[LC(k)].color!=-1&&T[RC(k)].color!=-1)
        T[k].color=T[LC(k)].color;
    else
        T[k].color=-1;
}
void build(int k,int l,int r)
{
    T[k].l=l;
    T[k].r=r;
    T[k].mid=MID(l,r);
    T[k].color=-1;
    if(l==r)
        return ;
    build(LC(k),l,T[k].mid);
    build(RC(k),T[k].mid+1,r);
}
bool post(int k,int l,int r,int c)
{
    if(T[k].color!=-1)
        return false;
    if(T[k].l==l&&T[k].r==r)
    {
        T[k].color=c;
        return true;
    }
    else
    {
        bool mix;//就是这里
        if(r<=T[k].mid)
            mix=post(LC(k),l,r,c);//直接return的话就不会pushup了
        else if(l>T[k].mid)
            mix=post(RC(k),l,r,c);
        else
        {
            bool check_left=post(LC(k),l,T[k].mid,c);
            bool check_right=post(RC(k),T[k].mid+1,r,c);
            mix=check_left||check_right;
        }
        pushup(k);
        return mix;
    }
}
void init()
{
    kind=0;
    pos.clear();
}
int main(void)
{
    int tcase,n,i;
    scanf("%d",&tcase);
    while (tcase--)
    {
        scanf("%d",&n);
        init();
        for (i=0; i<n; ++i)
        {
            scanf("%d%d",&node[i].l,&node[i].r);
            pos.push_back(node[i].l);
            pos.push_back(node[i].r);
        }
        sort(pos.begin(),pos.end());
        int SZ=pos.size();
        for (i=1; i<SZ; ++i)
            if(pos[i-1]<pos[i]-1)
                pos.push_back(pos[i]-1);

        sort(pos.begin(),pos.end());

        pos.erase(unique(pos.begin(),pos.end()),pos.end());
        for (i=0; i<n; ++i)
        {
            node[i].l=lower_bound(pos.begin(),pos.end(),node[i].l)-pos.begin()+1;
            node[i].r=lower_bound(pos.begin(),pos.end(),node[i].r)-pos.begin()+1;
        }

        build(1,1,pos.size());
        for (i=n-1; i>=0; --i)//这里循环要改成逆序
            kind+=post(1,node[i].l,node[i].r,i+1);
        printf("%d\n",kind);
    }
    return 0;
}

POJ 2528 Mayor's posters(线段树区间染色+离散化或倒序更新)

时间: 2024-10-12 19:38:04

POJ 2528 Mayor's posters(线段树区间染色+离散化或倒序更新)的相关文章

POJ 2528 Mayor&#39;s posters (线段树区间更新+离散化)

题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值.由于l和r范围比较大,内存就不够了,所以就用离散化的技巧 比如将1 4化为1 2,范围缩小,但是不影响答案. 写了这题之后对区间更新的理解有点加深了,重点在覆盖的理解(更新左右两个孩子节点,然后值清空),还是要多做做题目. 1 #include <iostream> 2 #include <

poj 2528 Mayor&#39;s posters 线段树区间更新

Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at al

POJ 2528 Mayor&#39;s posters(线段树,区间覆盖,单点查询)

Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 45703   Accepted: 13239 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral post

Poj 2528 Mayor&#39;s posters (线段树+离散化)

题目连接: http://poj.org/problem?id=2528 题目大意: 有10000000块瓷砖,n张海报需要贴在墙上,每张海报所占的宽度和瓷砖宽度一样,长度是瓷砖长度的整数倍,问按照所给海报顺序向瓷砖上贴海报,最后有几张海报是可见的? 解题思路: 因为瓷砖块数和海报张数多,首选线段树,如果按照常规的建树方式,把瓷砖当做数的节点,肯定会MTL......... 所以我们可以用海报的起点和终点当做树的节点,这样树的节点才有20000个,但是这样建树的话,求海报覆盖了那些节点会很复杂,

poj 2528 Mayor&#39;s posters(线段树)

题目链接:http://poj.org/problem?id=2528 思路分析:线段树处理区间覆盖问题,也可以看做每次给一段区间染不同的颜色,最后求在整段区间上含有的所有颜色种类数: 注意由于区间太大,所以需要离散化: 区间更新:对于线段树的每个结点,标记颜色,初始时没有颜色,标记为0:当更新时,使用延迟标记,需要标记传递到子节点: 区间查询:使用深度优先查询线段树,当某个子节点的颜色不为0时,即停止深度优先搜索,并在map中查询是否已经记录该段区间的颜色: 代码如下: #include <i

POJ 2528 Mayor&#39;s posters 线段树成段更新+离散化

题目来源:POJ 2528 Mayor's posters 题意:很多张海报贴在墙上 求可以看到几张海报 看那两张图就行了 第一张俯视图 思路:最多2W个不同的数 离散化一下 然后成段更新 a[rt] = i代表这个区间是第i张报纸 更新玩之后一次query cover[i]=1代表可以看到第i张报纸 #include <cstdio> #include <algorithm> #include <cstring> using namespace std; const

poj-----(2528)Mayor&#39;s posters(线段树区间更新及区间统计+离散化)

Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 43507   Accepted: 12693 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral post

Mayor&#39;s posters 线段树区间覆盖

题目链接 http://poj.org/problem?id=2528 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally dec

Mayor&#39;s posters(线段树之点的成段更新加离散化)

bin神的萌萌哒专题 这道题目也是简单区间更新的线段树题目,不过题目的数据范围很大,直接搞,时间空间的花费都会异常的高,所以就要用到离散化来优化时间空间复杂度. 何为离散化?........................ 简单地说就是对于给出的庞大数据进行一种数据上的缩小. 比如给你一段(1,10000)的区间,由于我们要的不是其区间长度,我们只需要知道这段区间的状态 如何,于是我们可以忽视其长度,把其表示成(1,2)这个区间长度极小的区间,这相当于物理上的质点. 当我们处理的问题上与其区间长