最长递增子序列
给定一个序列,找到最长子序列的长度,使得子序列中的所有元素被排序的顺序增加。
1.求最长递增子序列的长度O(N^2)
int Arr[30010],List[30010];
int LIS(int *Arr,int N) //arr[]存放的是待求数组
{
int Max = 0; //max为最大递增子序列的长度
for(int i = 1; i <= N; ++i)
List[i] = 1; //lis[i] 存放i之前的最大递增子序列的长度,初始都为1
for(int i = 2; i <= N; ++i)
for(int j = 1; j < i; ++j) //遍历i之前所有位置
if(Arr[i] >= Arr[j] && List[i]<List[j]+1)
List[i] = List[j] + 1;
//arr[i]>arr[j]为递增
//lis[i]<lis[j] + 1确保为当前最长递增序列
for(int i = 1; i <= N; ++i)
if(Max < List[i])
Max = List[i];
return Max;
}
2.求最长递增子序列的长度O(NlogN)
int Arr[10010],List[10010];
int Stack[10010];
int LIS(int *Arr,int N)
{
int top = 0;
Stack[top] = -1;
for(int i = 1; i <= N; ++i)
{
if(Arr[i] > Stack[top])
Stack[++top] = Arr[i];
else
{
int low = 1;
int high = top;
while(low <= high)
{
int mid = (low + high)/2;
if(Arr[i] > Stack[mid])
low = mid + 1;
else
high = mid - 1;
}
Stack[low] = Arr[i];
}
}
return top;
}
最长公共子序列
给定两个序列,找出在两个序列中同时出现的最长子序列的长度。一个子序列是出现在相对顺序的序列,但不一定是连续的。
1.求最长公共子序列长度
char s1[220],s2[220];
int dp[220][220];
//求串s1和串s2的公共子序列
int lcs(char *s1,char *s2)
{
int len1 = strlen(s1);
int len2 = strlen(s2);
for(int i = 0; i <= len1; ++i)
{
for(int j = 0; j <= len2; ++j)
{
if(i == 0 || j == 0)
dp[i][j] = 0;
else if(s1[i-1] == s2[j-1])
dp[i][j] = dp[i-1][j-1] + 1;
else
dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
}
}
return dp[len1][len2];
}
2.求最长公共子序列长度,并输出路径
int dp[110][110],pre[110][110],len1,len2;
char s1[110],s2[110];
void LCS(char *s1,char *s2)
{
for(int i = 0; i <= len1; ++i)
pre[i][0] = 1;
for(int i = 0; i <= len2; ++i)
pre[0][i] = 2;
//得到最长公共子序列,并标记dp[i][j]的上一个状态,用来回溯寻找路径
for(int i = 0; i <= len1; ++i)
{
for(int j = 0; j <= len2; ++j)
{
if(i == 0 || j == 0)
dp[i][j] = 0;
if(s1[i-1] == s2[j-1])
{
dp[i][j] = dp[i-1][j-1] + 1;
pre[i][j] = 0;
}
else if(dp[i-1][j] >= dp[i][j-1])
{
dp[i][j] = dp[i-1][j];
pre[i][j] = 1;
}
else
{
dp[i][j] = dp[i][j-1];
pre[i][j] = 2;
}
}
}
}
void Print(int i,int j) //回溯输出新的字符串序列
{
if(i == 0 && j == 0)
return ;
if(pre[i][j] == 0)
{
Print(i-1,j-1);
printf("%c",s1[i-1]);
}
else if(pre[i][j] == 1)
{
Print(i-1,j);
printf("%c",s1[i-1]);
}
else
{
Print(i,j-1);
printf("%c",s2[j-1]);
}
}
void solve(char *s1,char *s2)
{
len1 = strlen(s1);
len2 = strlen(s2);
LCS(s1,s2);
Print(len1,len2);
printf("\n");
}
最长回文子序列
给一个字符串,找出它的最长的回文子序列LPS的长度。例如,如果给定的序列是“BBABCBCAB”,则输出应该是7,“BABCBAB”是在它的最长回文子序列。
char s[2020];
int dp[2020][2020];
//dp[i][j]表示s[i~j]最长回文子序列
int LPS(char *s)
{
memset(dp,0,sizeof(dp));
int len = strlen(s);
for(int i = len-1; i >= 0; --i)
{
dp[i][i] = 1;
for(int j = i+1; j < len; ++j)
{
if(s[i] == s[j]) //头尾相同,最长回文子序列为去头尾的部分LPS加上头和尾
dp[i][j] = dp[i+1][j-1] + 2;
else //头尾不同,最长回文子序列是去头部分的LPS和去尾部分LPS较长的
dp[i][j] = max(dp[i][j-1],dp[i+1][j]);
}
}
return dp[0][len-1];
}
最小编辑距离
给定一个长度为m和n的两个字符串,设有以下几种操作:替换(R),插入(I)和删除(D)且都是相同的操作。寻找到转换一个字符串插入到另一个需要修改的最小(操作)数量。
int dp[1010][1010],len1,len2;
char s1[1010],s2[1010];
int EditDist(char *s1,char *s2)
{
int len1 = strlen(s1);
int len2 = strlen(s2);
//当两个字符串的大小为0,其操作距离为0。
//当其中一个字符串的长度是零,需要的操作距离就是另一个字符串的长度.
for(int i = 0; i <= len1; ++i)
dp[i][0] = i;
for(int i = 0; i <= len2; ++i)
dp[0][i] = i;
for(int i = 1; i <= len1; ++i)
{
for(int j = 1; j <= len2; ++j)
{
if(s1[i-1] == s2[j-1]) //对齐s1[i-1]和s2[j-1],不需改变
dp[i][j] = dp[i-1][j-1];
else
dp[i][j] = min(dp[i-1][j],min(dp[i][j-1],dp[i-1][j-1])) + 1;
//s1前缀右对齐,s2前缀右为‘ ‘,删除s1第i个字符 -> dp[i-1][j]
//s2前缀右对齐,s1前缀右为‘ ‘,删除s2第j个字符 -> dp[i][j-1]
//s1前缀右对齐,s2前缀右对齐,i、j不一样,替换 -> dp[i-1][j-1]
}
}
return dp[len1][len2];
}
时间: 2024-12-06 20:38:53