【机器学习快讯】20150124第一篇机器学习快讯

快讯动机

现在每天真的是变化太快,太多的资讯信息铺天盖地而来,要想把每天遇到的大量的优质资讯信息进行学习吸收又非常的困难,所以特此做一个机器学习快讯专题,把平日遇到的优质文章整理罗列出来,等有时间或者遇到类似的问题的时候再看也是有益处的。

机器学习技术

深度学习

学习建议

有关Python和机器学习

大数据工具

转载请注明作者Jason Ding及其出处

Github博客主页(http://jasonding1354.github.io/)

CSDN博客(http://blog.csdn.net/jasonding1354)

简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)

时间: 2024-10-22 11:21:27

【机器学习快讯】20150124第一篇机器学习快讯的相关文章

机器学习实战之第一章 机器学习基础

第1章 机器学习基础 机器学习 概述 机器学习就是把无序的数据转换成有用的信息. 获取海量的数据 从海量数据中获取有用的信息 我们会利用计算机来彰显数据背后的真实含义,这才是机器学习的意义. 机器学习 场景 例如:识别动物猫 模式识别(官方标准):人们通过大量的经验,得到结论,从而判断它就是猫. 机器学习(数据学习):人们通过阅读进行学习,观察它会叫.小眼睛.两只耳朵.四条腿.一条尾巴,得到结论,从而判断它就是猫. 深度学习(深入数据):人们通过深入了解它,发现它会'喵喵'的叫.与同类的猫科动物

近200篇机器学习&深度学习资料分享

编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.并且原文也会不定期的更新.望看到文章的朋友能够学到很多其它. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室

【转】近200篇机器学习&amp;深度学习资料分享(含各种文档,视频,源码等)

编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Ju

近200篇机器学习&amp;深度学习资料分享(含各种文档,视频,源码等)(1)

原文:http://developer.51cto.com/art/201501/464174.htm 编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning i

机器学习总结之第一章绪论

机器学习总结之第一章绪论 http://www.cnblogs.com/kuotian/p/6141728.html 1.2基本术语 特征向量:即示例,反映事件或对象在某方面的性质.例如,西瓜的色泽,敲声. 属性:例如 青绿 乌黑 清脆. 数据集:例如(色泽=青绿,根蒂=蜷缩,敲声=浊响),(色泽=浅白,根蒂=硬挺,敲声=清脆),(色泽=乌黑,根蒂=稍蜷,敲声=沉闷)-- 例如,D = {X1,X2,--,Xm}表示包含m个示例的数据集. Xi = (xi1:xi2:--:xid)每个示例有d个

机器学习算法概述第一章——线性回归

一.机器学习是什么 机器学习是人类用数学的语言通过大量的数据训练"教会"计算机做出一系列的行为. 二.机器学习的主要算法 ①线性回归算法 衍生的:正则化 ②逻辑回归算法 ③KNN算法 衍生的KD-tree 三.算法介绍 ①线性回归算法 运用线性模型y=ax+b,去拟合数据集,进行数据集的预测.在算法中,X为特征向量,即y的影响因素,w与b为可调整的模型参数.为了方便记忆,W=(w1,w2,w3,…wn,b),X=(x(1),.....x(n) 解析解:最小二乘法(又称最小平方法)是一种

机器学习:概述入门篇

本周任务: 1.python基础的准备 本课程拟采用Python做为机器算法应用的实现语言,所以请确保: 1)安装好Python开发环境, PyCharm 或 Anaconda等都可以,按个人习惯喜好. 2)基本库的安装,如numpy.pandas.scipy.matplotlib 3)具备一定的Python编程技能,如果不熟悉,可选择一个教程进行学习,Python简单好上手,资源也很丰富. 菜鸟教程 Python 3 教程 http://www.runoob.com/python3/pytho

1.2机器学习基础下--python深度机器学习

1. 机器学习更多应用举例: 人脸识别 2. 机器学习就业需求: LinkedIn所有职业技能需求量第一:机器学习,数据挖掘和统计分析人才 http://blog.linkedin.com/2014/12/17/the-25-hottest-skills-that-got-people-hired-in-2014/ 3.  深度学习(Deep Learning) 3.1 什么是深度学习? 深度学习是基于机器学习延伸出来的一个新的领域,由以人大脑结构为启发的神经网络算法为起源加之模型结构深度的增加

CSS px, em, 和rem; float以及clear(第一篇学习)

px:相对长度,相对于屏幕分辨率: em:相对长度单位,相对于当前对象内文本的字体尺寸.如当前对行内文本的字体尺寸未被人为设置,则相对于浏览器的默认字体尺寸.  任意浏览器的默认字体高都是16px.所有未经调整的浏览器都符合: 1em=16px.那么12px=0.75em,10px=0.625em.为了简化font-size的换算,需要在css中的body选择器中声明Font-size=62.5%,这就使em值变为 16px*62.5%=10px, 这样 12px=1.2em, 10px=1em