NYOJ 16 矩形嵌套【DP】

解题思路:呃,是看的紫书上面的做法,一个矩形和另一个矩形之间的关系就只有两种,(因为它自己是不能嵌套自己的),可嵌套,不可嵌套,是一个二元关系,如果可嵌套的话,则记为1,如果不可嵌套的话则记为0,就可以转化为求DAG(有向无环图,即一个点无论通过怎样的路径都不能回到自己这个点的图,符合本题矩形不能自己嵌套自己)

d(i)表示从i点出发的最长路长度,最后再找出d(i)中的最大值即可。

矩形嵌套

时间限制:3000 ms  |  内存限制:65535 KB

难度:4

描述
有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。
输入
第一行是一个正正数N(0<N<10),表示测试数据组数, 每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000) 随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽
输出
每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行
样例输入
1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2
样例输出
5
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int g[1005][1005],d[1005];
int n;
struct Node
{
	int l;
	int r;
} a[1005];

int dp(int i)
{
	int &ans=d[i];//ans的值 改变的 时候,数组d[i]的 值也会相应改变
	if(ans>0) return ans;
	ans=1;
	for(int j=1;j<=n;j++)
	if(g[i][j]) ans=max(ans,dp(j)+1);
	return ans;
}

int main()
{
	int ncase,i,j,ans;
	scanf("%d",&ncase);
	while(ncase--)
	{
		memset(d,0,sizeof(d));
		memset(g,0,sizeof(g));
		scanf("%d",&n);
		for(i=1;i<=n;i++)
		scanf("%d %d",&a[i].l,&a[i].r);
		for(i=1;i<=n;i++)//建图
		{
			for(j=1;j<=n;j++)
				if((a[j].l>a[i].l&&a[j].r>a[i].r)||(a[j].l>a[i].r&&a[j].r>a[i].l))
				g[i][j]=1;
		}
		ans=-1;
		for(i=1;i<=n;i++)
	     ans=max(ans,dp(i));
		 printf("%d\n",ans);
	}
}

  

时间: 2024-12-28 02:13:00

NYOJ 16 矩形嵌套【DP】的相关文章

NYOJ 16 矩形嵌套

矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中.你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内. 输入 第一行是一个正正数N(0<N<10),表示测试数据组数,每组测

NYOJ 16 矩形嵌套(经典DP)

http://acm.nyist.net/JudgeOnline/problem.php?pid=16 矩形嵌套 时间限制:3000 ms  |           内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中.你的任务是选出尽可能多的矩形排成一行,使得除最后一个

NYOJ 16 矩形嵌套(动态规划)

时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中.你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内. 输入 第一行是一个正正数N(0<N<10),表示测试数据组数,每组测试数据的第

NYOJ 16 矩形嵌套 (DAG上的DP)

矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中.你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内. 输入 第一行是一个正正数N(0<N<10),表示测试数据组数, 每组

南阳OJ 16 矩形嵌套

描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中.你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内. 输入 第一行是一个正正数N(0<N<10),表示测试数据组数, 每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=10

NYOJ - 矩形嵌套(经典dp)

矩形嵌套时间限制:3000 ms | 内存限制:65535 KB 描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中.你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内. 输入第一行是一个正正数N(0<N<10),表示测试数据组数,每组测试数据的第一行是一

NYOJ_矩形嵌套(DAG上的最长路 + 经典dp)

本题大意:给定多个矩形的长和宽,让你判断最多能有几个矩形可以嵌套在一起,嵌套的条件为长和宽分别都小于另一个矩形的长和宽. 本题思路:其实这道题和之前做过的一道模版题数字三角形很相似,大体思路都一致,这道题是很经典的DAG上的最长路问题,用dp[ i ]表示以i为出发点的最长路的长度,因为每一步都只能走向他的相邻点,则 d[ i ]  = max(d[ j ] + 1)这里 j 是任意一个面积比 i 小的举行的编号. 下面的代码中附带了最小字典序最长路打印的问题,我们找到第一个路径最长的 i,往后

矩形嵌套-记忆化搜索(dp动态规划)

矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描写叙述 有n个矩形,每个矩形能够用a,b来描写叙述,表示长和宽. 矩形X(a,b)能够嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度).比如(1,5)能够嵌套在(6,2)内,但不能嵌套在(3,4)中. 你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每个矩形都能够嵌套在下一个矩形内. 输入 第一行是一个正正数N(0<N<10).表示測试数据组

Uva 103-Stacking Boxes(DP/矩形嵌套)

题目链接:点击打开链接 lrj白书第九章例题..DAG上的最长路..矩形嵌套 , 一个n维的矩形, a可以套在b内的条件是 a存在一个全排列 < b 可以读入的时候给 矩形排序..建图略麻烦.. #include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include <string> #include <cctype> #in