Bellman-Ford算法(有向图)

#include <iostream>
#include <cstring>
#include <cstdio>

#define MAX 100
#define INF 0x3f3f3f
using namespace std;
//有向图
struct Edge
{
    int u,v,cost;
}e[MAX];
int dist[MAX];  //最短路径
int prev[MAX];  //路径
int m,n;    //边数和顶点数

bool Bellman_Ford(int v0)
{
    int u=v0;
    for(int i=1;i<=n;i++)
        dist[i]=INF;
    dist[u]=0;
    for(int i=1;i<=n;i++)
        for(int j=0;j<m;j++)
            if(dist[e[j].v]>dist[e[j].u]+e[j].cost)
            {
                dist[e[j].v]=dist[e[j].u]+e[j].cost;
                prev[e[j].v]=e[j].u;
            }
    for(int i=0;i<m;i++)
        if(dist[e[i].v]>dist[e[i].u]+e[i].cost)
            return 0;
    return 1;
}

int main()
{
    cin>>n>>m;
    for(int i=0;i<m;i++)
        cin>>e[i].u>>e[i].v>>e[i].cost;
    if(Bellman_Ford(1))
        for(int i = 1; i <= n; ++i) //每个点最短路
        {
            printf("%d\n", dist[i]);
        }
    else
        printf("have negative circle\n");
    return 0;
}
时间: 2024-10-21 15:49:17

Bellman-Ford算法(有向图)的相关文章

Bellman - Ford 算法解决最短路径问题

Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力不从心了,而Bellman - Ford算法可以解决这种问题. Bellman - Ford 算法可以处理路径权值为负数时的单源最短路径问题.设想可以从图中找到一个环路且这个环路中所有路径的权值之和为负.那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去.如果不处理这个负环路,程序就会永远运

Bellman—Ford算法思想

---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G运行Bellman—Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路.若存在负权回路,单源点最短路径问题无解:若不存在这样的回路,算法将给出从源点s到图G的任意顶点v的最短路径值d[v] Bellman—Ford算法流程 分为三个阶段: (1)初始化:将除源点外的所有顶点

poj 3259 Wormholes (BELLman—FOrd算法)(邻接矩阵表示)

http://poj.org/problem?id=3259 之前一开始 ,没做出来,搁置了好几天才看见bug所在.所以今天a掉了 ,把代码贴出来,这个使用邻接矩阵表示的 ,下一篇用邻接表可以提高效率. #include<iostream> #include<queue> #include<stdio.h> #include<string.h> using namespace std; const int INF=600; int G[INF][INF];

最短路径——Bellman Ford算法(C++)

源代码: #include<cstdio>#include<cstring>int m(1),n,k,i[1001],x[1001],y[1001],f[1001];int main(){ scanf("%d%d",&n,&k); for (int a=1;a<=n;a++) for (int b=1;b<=n;b++) { scanf("%d",&i[m]); if (i[m]!=-1) { x[m]=a

POJ 1860 Currency Exchange (Bellman ford)

Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22405   Accepted: 8095 Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and pe

bellman-ford算法

给定图G(V, E)(其中V.E分别为图G的顶点集与边集),源点s, 数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n]为, Distant[s]为0: 以下操作循环执行至多n-1次,n为顶点数:对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] = Distant[u]+w(u, v).w(u, v)为边e(u,v)的权值:若上述操作没有对Distant进行更新,说明最短路径已经查找完

ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可以求得一点到任意一点经过一条边的最短路,遍历两次可以求得一点到任意一点经过两条边的最短路...如 此反复,当遍历m次所有边后,则可以求得一点到任意一点经过m条边后的最短路(有点类似离散数学中邻接矩阵的连通性判定) POJ1556-The Doors 初学就先看POJ2240吧 题意:求从(0,5)到

poj2186Popular Cows(Kosaraju算法--有向图的强连通分量的分解)

1 /* 2 题目大意:有N个cows, M个关系 3 a->b 表示 a认为b popular:如果还有b->c, 那么就会有a->c 4 问最终有多少个cows被其他所有cows认为是popular! 5 6 思路:强连通分量中每两个节点都是可达的! 通过分解得到最后一个连通分量A, 7 如果将所有的强连通分量看成一个大的节点,那么A一定是孩子节点(因为我们先 8 完成的是父亲节点的强连通分量)! 最后如果其他的强连通分量都可以指向A,那么 9 A中的每一个cow都会被其他cows所

Bellman ford 最短路径算法

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" /> 下表记录S到每一个节点的距离: 第一次迭代, S->A = 4 ,由于S->A眼下为INF.因此更新MIN(S->A)为4 S->B = 6.由于S->B眼下为INF.因此更新MIN(S->B)为6 S->C

朱刘算法 有向图定根的最小生成树poj3164

关于为什么不能用Prim求解此类问题,如下 Prim可以看成是维护两个顶点集或者看成维护一颗不断生成的树(感觉前一种说法好一点) 倘若是有向图有三个顶点1.2.3 边的情况如下 1->2:          5 1->3:         6 2->3:       1000861 3->2:         2 显然若是按照Prim算法来说,先将顶点一压入集合.而后顺势找到最小的顶点2,然后1.2中到三的最短边是1000861,那么花费就是1000866,显然不对的.: 而若是无