【CF659E】New Reform

分析转载自http://blog.csdn.net/yukizzz/article/details/51029628

题意:

给定n个点和m条双向边,将双向边改为单向边,问无法到达的顶点最少有多少个?

分析:

无法到达的话即入度为0。 
DFS判断每一个连通块中是否存在环,如果存在环,就能保证环中每个点的入度都大于等于1。否则,有头有尾,头的入度为0。

 1 var head,vet,next,flag:array[1..200000]of longint;
 2     n,m,x,y,tmp,ans,tot,i:longint;
 3
 4 procedure add(a,b:longint);
 5 begin
 6  inc(tot);
 7  next[tot]:=head[a];
 8  vet[tot]:=b;
 9  head[a]:=tot;
10 end;
11
12 procedure dfs(u,pre:longint);
13 var e,v:longint;
14 begin
15  if flag[u]=1 then begin tmp:=0; exit; end;
16  flag[u]:=1;
17  e:=head[u];
18  while e<>0 do
19  begin
20   v:=vet[e];
21   if v<>pre then dfs(v,u);
22   e:=next[e];
23  end;
24 end;
25
26 begin
27 // assign(input,‘1.in‘); reset(input);
28  //assign(output,‘1.out‘); rewrite(output);
29  readln(n,m);
30  for i:=1 to m do
31  begin
32   read(x,y);
33   add(x,y);
34   add(y,x);
35  end;
36  for i:=1 to n do
37   if flag[i]=0 then
38   begin
39    tmp:=1;
40    dfs(i,0);
41    ans:=ans+tmp;
42   end;
43  writeln(ans);
44 // close(input);
45  //close(output);
46 end.

时间: 2024-12-15 21:16:14

【CF659E】New Reform的相关文章

【Kettle】4、SQL SERVER到SQL SERVER数据转换抽取实例

1.系统版本信息 System:Windows旗舰版 Service Pack1 Kettle版本:6.1.0.1-196 JDK版本:1.8.0_72 2.连接数据库 本次实例连接数据库时使用全局变量. 2.1 创建新转换:spoon启动后,点击Ctrl+N创建新转换 2.2 在新转换界面中,右键点击DB连接,系统会弹出[数据库连接]界面. windows系统环境下,可用${}获取变量的内容. 说明: 连接名称:配置数据源使用名称.(必填) 主机名称:数据库主机IP地址,此处演示使用本地IP(

详解go语言的array和slice 【二】

上一篇  详解go语言的array和slice [一]已经讲解过,array和slice的一些基本用法,使用array和slice时需要注意的地方,特别是slice需要注意的地方比较多.上一篇的最后讲解到创建新的slice时使用第三个索引来限制slice的容量,在操作新slice时,如果新slice的容量大于长度时,添加新元素依然后使源的相应元素改变.这一篇里我会讲解到如何避免这些问题,以及迭代.和做为方法参数方面的知识点. slice的长度和容量设置为同一个值 如果在创建新的slice时我们把

【转载】C++拷贝构造函数(深拷贝,浅拷贝)

对于普通类型的对象来说,它们之间的复制是很简单的,例如:int a=88;int b=a; 而类对象与普通对象不同,类对象内部结构一般较为复杂,存在各种成员变量.下面看一个类对象拷贝的简单例子. #include <iostream>using namespace std;class CExample {private:     int a;public:     CExample(int b)     { a=b;}     void Show ()     {        cout<

【BZOJ】1799: [Ahoi2009]self 同类分布

[题意]给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1 ≤ a ≤ b ≤ 10^18 [算法]数位DP [题解] 感觉这种方法很暴力啊. 枚举数位和1~162(不能枚举0,不然会模0,相当于除0),记忆化f[pos][sum][val],sum表示当前数位和,val表示数字取模枚举的数位和. 每次sum+i和(val*10+i)%MOD转移. sum用减法优化,即记忆化(MOD-sum),但是枚举过程中都要memset,导致效率低下,记忆化效果很差. 要什么方法才能跑1.3s

【BZOJ4942】[Noi2017]整数 线段树+DFS(卡过)

[BZOJ4942][Noi2017]整数 题目描述去uoj 题解:如果只有加法,那么直接暴力即可...(因为1的数量最多nlogn个) 先考虑加法,比较显然的做法就是将A二进制分解成log位,然后依次更新这log位,如果最高位依然有进位,那么找到最高位后面的第一个0,将中间的所有1变成0,那个0变成1.这个显然要用到线段树,但是复杂度是nlog2n的,肯定过不去. 于是我在考场上yy了一下,这log位是连续的,我们每次都要花费log的时间去修改一个岂不是很浪费?我们可以先在线段树上找到这段区间

【BZOJ4945】[Noi2017]游戏 2-SAT

[BZOJ4945][Noi2017]游戏 题目描述 题解:2-SAT学艺不精啊! 这题一打眼看上去是个3-SAT?哎?3-SAT不是NPC吗?哎?这题x怎么只有8个?暴力走起! 因为x要么不是A要么不是B,所以直接2^8枚举所有x就行了.然后就变成了一个2-SAT问题.假设有两场游戏1,2,分别可以使用的地图为A1,A2,B1,B2,如果有一个限制是1 A 2 A,那么选A1就必须选A2,然后我这个沙茶就开开心心的拿了55分. 为什么不对?我建出来的图显然不对偶啊!考虑逆否命题,选A1就必须选

【BZOJ】2337: [HNOI2011]XOR和路径

[算法]期望+高斯消元 [题解]因为异或不能和期望同时运算,所以必须转为加乘 考虑拆位,那么对于边权为1取反,边权为0不变. E(x)表示从x出发到n的路径xor期望. 对于点x,有E(x)=Σ(1-E(y))(边权1)||E(y)(边权0)/t[x]  t[x]为x的度. 那么有n个方程,整体乘上t[x]确保精度,右项E(x)移到左边--方程可以各种变形. 每次计算完后*(1<<k)就是贡献. 逆推的原因在于n不能重复经过,而1能重复经过,所以如果计算"来源"不能计算n,

【BZOJ】[HNOI2009]有趣的数列

[算法]Catalan数 [题解] 学了卡特兰数就会啦>_<! 因为奇偶各自递增,所以确定了奇偶各自的数字后排列唯一. 那么就是给2n个数分奇偶了,是不是有点像入栈出栈序呢. 将做偶数标为-1,做奇数标为+1,显然当偶数多于奇数时不合法,因为它压不住后面的奇数. 然后其实这种题目,打表就可知啦--QAQ 然后问题就是求1/(n+1)*C(2n,n)%p了,p不一定是素数. 参考bzoj礼物的解法. 看到网上清一色的素数筛+分解质因数解法,不解了好久,感觉写了假的礼物-- 后来觉得礼物的做法才比

【Vue】详解Vue生命周期

Vue实例的生命周期全过程(图) (这里的红边圆角矩形内的都是对应的Vue实例的钩子函数) 在beforeCreate和created钩子函数间的生命周期 在beforeCreate和created之间,进行数据观测(data observer) ,也就是在这个时候开始监控data中的数据变化了,同时初始化事件 created钩子函数和beforeMount间的生命周期 对于created钩子函数和beforeMount间可能会让人感到有些迷惑,下面我就来解释一下: el选项的有无对生命周期过程