希尔排序(插入排序)-八大排序三大查找汇总(5)

基本思想

  该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序。

稳定性

  由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。

时间复杂度

  希尔排序的时间复杂度取决于步长的选择。

  平均情况下,希尔排序的时间复杂度为O(Nlog2N),最坏情况下为O(N1.5)。

空间复杂度

  O(1)

使用场景

  希尔排序时间复杂度的下界是n*log2n。希尔排序没有快速排序算法快 O(n(logn)),因此中等大小规模表现良好,对规模非常大的数据排序不是最优选择。但是比O(  )复杂度的算法快得多。并且希尔排序非常容易实现,算法代码短而简单。 此外,希尔算法在最坏的情况下和平均情况下执行效率相差不是很多,与此同时快速排序在最坏的情况下执行的效率会非常差。

  专家们提倡,几乎任何排序工作在开始时都可以用希尔排序,若在实际使用中证明它不够快,再改成快速排序这样更高级的排序算法

比较

  希尔排序的实质就是分组插入排序,该方法又称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。

  希尔排序是基于插入排序的以下两点性质而提出改进方法的:

  1. 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率。
  2. 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位。

  希尔排序优于直接插入排序,是因为希尔排序是按照不同步长对元素进行插入,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;当元素基本有序了,步长很小,插入排序对于有序的序列效率很高。

关于步长(增量)的选择

  好的增量序列的共同特征:

  ① 最后一个增量必须为1;

  ② 应该尽量避免序列中的值(尤其是相邻的值)互为倍数的情况。

  已知的最好步长序列是由Sedgewick提出的(1, 5, 19, 41, 109,...),该序列的项来自

    这两个算式。

  这项研究也表明“比较在希尔排序中是最主要的操作,而不是交换。”用这样步长序列的希尔排序比插入排序和堆排序都要快,甚至在小数组中比快速排序还快,但是在涉及大量数据时希尔排序还是比快速排序慢。

代码及分析

以n=10的一个数组49, 38, 65, 97, 26, 13, 27, 49, 55, 4为例

第一次 gap = 10 / 2 = 5

49   38   65   97   26   13   27   49   55   4

1A                             1B

2A                           2B

3A                         3B

4A                        4B

5A                      5B

1A,1B,2A,2B等为分组标记,数字相同的表示在同一组,大写字母表示是该组的第几个元素, 每次对同一组的数据进行直接插入排序。即分成了五组(49, 13) (38, 27) (65, 49)  (97, 55)  (26, 4)这样每组排序后就变成了(13, 49)  (27, 38)  (49, 65)  (55, 97)  (4, 26),下同。

第二次 gap = 5 / 2 = 2

排序后

13   27   49   55   4    49   38   65   97   26

1A         1B         1C         1D         1E

2A         2B          2C         2D         2E

第三次 gap = 2 / 2 = 1

4   26   13   27   38    49   49   55   97   65

1A 1B   1C  1D   1E    1F   1G   1H   1I    1J

第四次 gap = 1 / 2 = 0 排序完成得到数组:

4   13   26   27   38    49   49   55   65   97

下面给出严格按照定义来写的希尔排序

 1 void shellsort1(int a[], int n)
 2 {
 3     int i, j, gap;
 4
 5     for (gap = n / 2; gap > 0; gap /= 2) //步长
 6     {
 7         for (i = 0; i < gap; i++)        //直接插入排序
 8         {
 9             for (j = i + gap; j < n; j += gap)
10                 if (a[j] < a[j - gap])
11             {
12                 int temp = a[j];
13                 int k = j - gap;
14                 while (k >= 0 && a[k] > temp)
15                 {
16                     a[k + gap] = a[k];
17                     k -= gap;
18                 }
19                 a[k + gap] = temp;
20             }
21         }
22     }
23 }

  类似直接插入排序,将上面代码进行简化,将搜索和数据后移这二个步骤合并。

 1 void shellsort2(int a[], int n)
 2 {
 3     int j, gap;
 4
 5     for (gap = n / 2; gap > 0; gap /= 2)
 6         for (j = gap; j < n; j++)//从数组第gap个元素开始
 7             if (a[j] < a[j - gap])//每个元素与自己组内的数据进行直接插入排序
 8             {
 9                 int temp = a[j];
10                 int k = j - gap;
11                 while (k >= 0 && a[k] > temp)
12                 {
13                     a[k + gap] = a[k];
14                     k -= gap;
15                 }
16                 a[k + gap] = temp;
17             }
18 }

  下面的代码简化了希尔排序的代码,但是降低了效率

1 void shellsort3(int a[], int n)
2 {
3     int i, j, gap;
4
5     for (gap = n / 2; gap > 0; gap /= 2)
6         for (i = gap; i < n; i++)
7             for (j = i - gap; j >= 0 && a[j] > a[j + gap]; j -= gap)
8                 Swap(a[j], a[j + gap]);
9 }

主要参考:http://blog.csdn.net/morewindows/article/details/6668714

最后,http://www.cnblogs.com/huangxincheng/archive/2011/11/20/2255695.html给出了直接插入排序和希尔排序在时间性能上的比较(以C#)。

时间: 2024-08-02 19:11:07

希尔排序(插入排序)-八大排序三大查找汇总(5)的相关文章

归并排序-八大排序三大查找汇总(7)

基本思想 归并排序简单的说就是递归后合并,该算法是分治法(Divide and Conquer)的一个典型应用. 基本思想为:将待排序序列R[0...n-1]看成是n个长度为1的有序序列,两两有序表成对归并,得到n/2个长度为2的有序表:将这些有序序列再次归并,如此反复进行下去,最后得到一个长度为n的有序序列. 综上可知: 归并排序其实要做两件事: (1)“分解”——将序列每次折半划分. (2)“合并”——将划分后的序列段两两合并后排序. 性能 排序类别 排序方法 时间复杂度 空间复杂度 稳定性

直接插入排序(插入排序)-八大排序三大查找汇总(4)

基本思想 直接插入排序(Insertion Sort)的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子序列中的适当位置,直到全部记录插入完成为止. 直接插入排序是由两层嵌套循环组成的.外层循环标识并决定待比较的数值.内层循环为待比较数值确定其最终位置.直接插入排序是将待比较的数值与它的前一个数值进行比较,所以外层循环是从第二个数值开始的.当前一数值比待比较数值大的情况下继续循环比较,直到找到比待比较数值小的并将待比较数值置入其后一位置,结束该次循环. 时间复杂度 O(

堆排序(选择排序)-八大排序三大查找汇总(2)

二叉堆的定义 二叉堆是完全二叉树或者是近似完全二叉树. 二叉堆满足二个特性: 1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值. 2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆). 当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆.当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆.下图展示一个最小堆: 堆的存储 一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2.它的左右子结点下标分别为2 * i + 1和2 * i + 2.如

简单选择排序(选择排序)-八大排序三大查找汇总(1)

工作原理: 每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完. 稳定性: 选择排序是不稳定的排序方法(比如序列[5, 5, 3]第一次就将第一个[5]与[3]交换,导致第一个5挪动到第二个5后面). 时间复杂度: 比较次数O(n^2),比较次数与关键字的初始状态无关,总的比较次数N=(n-1)+(n-2)+...+1=n*(n-1)/2. 交换次数O(n),最好情况是,已经有序,交换0次:最坏情况下,即待排序记录初始状态是按第一条记录最大

快速排序(交换排序)-八大排序三大查找汇总(6)

基本思想 1.先从数列中取出一个数作为基准数. 2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边. 3.再对左右区间重复第二步,直到各区间只有一个数. 性能 时间复杂度:平均情况下的时间复杂度为O(nlogn).最坏情况下时间复杂度为O(n2). 空间复杂度:除去程序运行实现的空间消费(例如递归栈),快速排序算法只需消耗确定数量的空间(即O(1),常数级空间). 稳定性:不稳定的算法 注意 编译器函数库自带的快速排序函数:qsort() 用 法: void qsort

冒泡排序-八大排序三大查找汇总(3)

基本思想 两两相邻元素之间的比较,如果前者大于后者,则交换: 设数组长度为N. 1.比较相邻的前后二个数据,如果前面数据大于后面的数据,就将二个数据交换. 2.这样对数组的第0个数据到N-1个数据进行一次遍历后,最大的一个数据就“沉”到数组第N-1个位置. 3.N=N-1,如果N不为0就重复前面二步,否则排序完成. 稳定性 冒泡排序是一种稳定的排序算法 时间复杂度 若文件的初始状态是正序的,一趟扫描即可完成排序.所需的关键字比较次数 和记录移动次数  均达到最小值:  ,  .所以,冒泡排序最好

八大排序算法原理以及Java实现(直接插入排序)

概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 我们这里说说八大排序就是内部排序. 当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序.堆排序或归并排序序. 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短: 1.插入排序-直接插入排序(Straight Insertion Sort) 基本思想: 将一个记录插入到

八大排序算法学习笔记:插入排序(一)

插入排序     包括:直接插入排序,二分插入排序(又称折半插入排序),链表插入排序,希尔排序(又称缩小增量排序).属于稳定排序的一种(通俗地讲,就是两个相等的数不会交换位置) . 直接插入排序: 1.算法的伪代码(这样便于理解):     INSERTION-SORT (A, n)             A[1 . . n] for j ←2 to n do key ← A[ j] i ← j – 1 while i > 0 and A[i] > key do A[i+1] ← A[i]

八大排序算法学习笔记:插入排序(二分插入排序)

二分插入排序   也称折半插入排序, 1.基本思想:设数列[0....n]分为两部分一部分是[0...i]为有序序列,另一部分是[i+1.....n]为无序序列,从无序序列中取一个数 x ,利用二分查找算法找到 x 在有序序列中的插入位置并插入,有序序列还是有序的,接下来重复上述步骤,直到无序序列全部插入有序序列 ,这是整个序列只剩下有序序列即有序了. 2.代码:    3.复杂度: 用二分插入排序所要进行的总比较次数为O(lgn),当n较大时,比直接插入排序的最大比较次数小得多,但大于最小比较