hlg1492盒子【最小路径覆盖】

大意:有n个盒子,告诉你一些嵌套关系,比如a能放到b里  c能放到a里

问最少使多少盒子露在外面

分析:这里要求的是最少DAG的数量,也就是传说中的最小路径覆盖问题

最小路径覆盖:

公式:最小路径覆盖 = 节点个数 - 最大匹配

这儿有一篇关于其解释,

首先给出公式:DAG的最小路径覆盖数=DAG图中的节点数-相应二分图中的最大匹配数.

那么对应一个DAG,如何构造相应的二分图?对于DAG中的一个顶点p,二分图中有两个顶点p和p‘,对应DAG中的一条有向边p->q,二分图中有p-q‘的一条无向边.二分图中p属于S集合,p‘属于T集合.

下面我们来解释上面公式为什么成立,思路参考baihacker神牛:


上图中,对应左边的DAG建立构造右边的二分图,可以找到二分图的一个最大匹配M:1-3‘,3-4‘,那么M中的这两条匹配边怎样对应DAG中的路径的边?

使二分图中一条边对应DAG中的一条有向边,1-3‘对应DAG图中的有向边1->3,这样DAG中1就会有一个后继顶点(3会是1的唯一后继,因为二分图中一个顶点至多关联一条边!),所以1不会成为DAG中一条路径中的结尾顶点,同样,3-4‘对应DAG中3->4,3也不会成为结尾顶点,那么原图中总共4个顶点,减去2个有后继的顶点,就剩下没有后继的顶点,即DAG路径的结尾顶点,而每个结尾顶点正好对应DAG中的一条路径,二分图中寻找最大匹配M,就是找到了对应DAG中的非路径结尾顶点的最大数目,那么DAG中顶点数-|M|就是DAG中结尾顶点的最小数目,即DAG的最小路径覆盖数.

代码:

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 using namespace std;
 5
 6 const int maxn = 505;
 7
 8 struct Node {
 9     int to;
10     int next;
11 }p[maxn * maxn];
12 int head[maxn * maxn];
13 int tot;
14 void AddEdge(int u, int v) {
15     p[tot].to = v;
16     p[tot].next = head[u];
17     head[u] = tot++;
18 }
19
20 int Link[maxn];
21 int vis[maxn];
22
23 bool Find(int u) {
24     for(int i = head[u]; i; i = p[i].next) {
25         int v = p[i].to;
26         if(!vis[v]) {
27             vis[v] = 1;
28             if(Link[v] == -1 || Find(Link[v])) {
29                 Link[v] = u;
30                 return true;
31             }
32         }
33     }
34     return false;
35 }
36
37 int solve(int n) {
38     int cnt = 0;
39     memset(Link, -1, sizeof(Link));
40     for(int i = 1; i <= n; i++) {
41         memset(vis, 0, sizeof(vis));
42         if(Find(i)) {
43             cnt++;
44         }
45     }
46     return cnt;
47 }
48
49 int main() {
50     int n, m;
51     int u, v;
52     while(EOF != scanf("%d %d",&n, &m)) {
53         memset(head, 0, sizeof(head));
54         tot = 1;
55         for(int i = 0; i < m; i++) {
56             scanf("%d %d",&u, &v);
57             AddEdge(u, v);
58         }
59         printf("%d\n",n - solve(n));
60     }
61     return 0;
62 }

hlg1492盒子【最小路径覆盖】,布布扣,bubuko.com

时间: 2024-12-17 16:54:35

hlg1492盒子【最小路径覆盖】的相关文章

hdu4160Dolls【最小路径覆盖】

大意:有n个盒子,前者只有xyz均大于后者,前者才可把后者装下 告诉你n个盒子的xyz求最少露在外面的盒子数 思路:最小路径覆盖 = n - 最大匹配 代码: 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <vector> 5 using namespace std; 6 7 const int maxn = 505; 8 struct Node { 9 i

hiho 第118周 网络流四&#183;最小路径覆盖

描述 国庆期间正是旅游和游玩的高峰期. 小Hi和小Ho的学习小组为了研究课题,决定趁此机会派出若干个调查团去沿途查看一下H市内各个景点的游客情况. H市一共有N个旅游景点(编号1..N),由M条单向游览路线连接.在一个景点游览完后,可以顺着游览线路前往下一个景点. 为了避免游客重复游览同一个景点,游览线路保证是没有环路的. 每一个调查团可以从任意一个景点出发,沿着计划好的游览线路依次调查,到达终点后再返回.每个景点只会有一个调查团经过,不会重复调查. 举个例子: 上图中一共派出了3个调查团: 1

hdu3861 强连通+最小路径覆盖

题意:有 n 个点,m 条边的有向图,需要将这些点分成多个块,要求:如果两点之间有路径能够互相到达,那么这两个点必须分在同一块:在同一块内的任意两点相互之间至少要有一条路径到达,即 u 到达 v 或 v 到达 u:每个点都只能存在于单独一个块内.问最少需要划分多少块. 首先,对于如果两点之间能够相互到达则必须在同一块,其实也就是在同一个强连通分量中的点必须在同一块中,所以首先就是强连通缩点.然后在同一块内的任意两点之间要有一条路,那么其实就是对于一块内的强连通分量,至少要有一条路径贯穿所有分量.

COGS728. [网络流24题] 最小路径覆盖问题

算法实现题8-3 最小路径覆盖问题(习题8-13) ´问题描述: 给定有向图G=(V,E).设P是G的一个简单路(顶点不相交)的集合.如果V中每个顶点恰好在P的一条路上,则称P是G的一个路径覆盖.P中路径可以从V的任何一个顶点开始,长度也是任意的,特别地,可以为0.G的最小路径覆盖是G的所含路径条数最少的路径覆盖.设计一个有效算法求一个有向无环图G的最小路径覆盖. 提示: 设V={1,2,...  ,n},构造网络G1=(V1,E1)如下: 每条边的容量均为1.求网络G1的(x0,y0)最大流.

【最小路径覆盖】BZOJ2150-部落战争

[题目大意] 给出一张图,'*'表示不能走的障碍.已知每只军队可以按照r*c的方向行军,且军队与军队之间路径不能交叉.问占据全部'.'最少要多少支军队? [思路] 首先注意题意中有说“军队只能往下走”,弄清楚方向. 从某点往它能走的四个点走一趟,连边.最小路径覆盖=总数-二分图最大匹配. 哦耶!老了,连匈牙利的板子都敲错orzzzzzz 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int MAXN=55; 4 int m,n

有向无环图(DAG)的最小路径覆盖

DAG的最小路径覆盖 定义:在一个有向图中,找出最少的路径,使得这些路径经过了所有的点. 最小路径覆盖分为最小不相交路径覆盖和最小可相交路径覆盖. 最小不相交路径覆盖:每一条路径经过的顶点各不相同.如图,其最小路径覆盖数为3.即1->3>4,2,5. 最小可相交路径覆盖:每一条路径经过的顶点可以相同.如果其最小路径覆盖数为2.即1->3->4,2->3>5. 特别的,每个点自己也可以称为是路径覆盖,只不过路径的长度是0. DAG的最小不相交路径覆盖 算法:把原图的每个点

hdu 3861 The King’s Problem (强连通+最小路径覆盖)

The King's Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 1637    Accepted Submission(s): 600 Problem Description In the Kingdom of Silence, the king has a new problem. There are N cit

POJ 3020 Antenna Placement ,二分图的最小路径覆盖

题目大意: 一个矩形中,有N个城市'*',现在这n个城市都要覆盖无线,若放置一个基站,那么它至多可以覆盖相邻的两个城市. 问至少放置多少个基站才能使得所有的城市都覆盖无线? 无向二分图的最小路径覆盖 = 顶点数 –  最大二分匹配数/2 路径覆盖就是在图中找一些路径,使之覆盖了图中的所有顶点,且任何一个顶点有且只有一条路径与之关联: #include<cstdio> #include<cstring> #include<vector> #include<algor

Codeforces 618D Hamiltonian Spanning Tree(树的最小路径覆盖)

题意:给出一张完全图,所有的边的边权都是 y,现在给出图的一个生成树,将生成树上的边的边权改为 x,求一条距离最短的哈密顿路径. 先考虑x>=y的情况,那么应该尽量不走生成树上的边,如果生成树上有一个点的度数是n-1,那么必然需要走一条生成树上的边,此时答案为x+y*(n-2). 否则可以不走生成树上的边,则答案为y*(n-1). 再考虑x<y的情况,那么应该尽量走生成树上的边,由于树上没有环,于是我们每一次需要走树的一条路,然后需要从非生成树上的边跳到树的另一个点上去, 显然跳的越少越好,于