【ACL2019】利用关联词与关系词的对应性,通过标签嵌入识别隐性话语关系

Employing the Correspondence of Relations and Connectives to Identify Implicit Discourse Relations via Label Embeddings

利用关联词与关系词的对应性,通过标签嵌入识别隐性话语关系

Introduction

Discourse parsing reveals the discourse units (i.e., text spans, sentences, clauses) of the documents and how such units are related to each others to improve the coherence.

语篇分析揭示了文档中的语篇单位,以及这些单位之间是如何相互联系的,以提高文档的连贯性。

This work focuses on the task of implicit discourse relation recognition (IDRR), aiming to identify the discourse relations (i.e., cause, contrast) between adjacent text spans in documents.

本文主要研究隐性语篇关系识别(IDRR)的任务,旨在识别文档中相邻语篇跨度之间的语篇关系。

IDRR is a fundamental problem in discourse analysis (Knott, 2014; Webber et al., 1999) with important applications on question answering (Liakata et al., 2013; Jansen et al., 2014) and text summarization (Gerani et al., 2014; Yoshida et al., 2014), to name a few.

idrr是语篇分析中的一个基本问题,在问答和文本摘要中有着重要的应用。

Due it its importance, IDRR is being studied actively in the literature, leading to the recent advances for this problem based on deep learning (Chen et al., 2016; Qin et al., 2016; Zhang et al., 2016; Lan et al., 2017; Dai and Huang, 2018).

由于IDRR的重要性,文献中对其进行了积极的研究,导致了基于深度学习的IDRR问题的最新进展。

Consider the two following text spans (called arguments) taken from (Qin et al., 2017) as an example:

以以下两个文本跨距(称为参数)为例:

Argument 1: Never mind.

Argument 2: You already know the answer

An IDRR model should be able to recognize that argument 2 is the cause of argument 1 (i.e., the Cause relation) in this case.

在这种情况下,IDRR模型应该能够识别参数2是参数1的原因(即原因关系)。

This is a challenging problem as the models need to rely solely on the text of the arguments to predict accurate discourse relations.

这是一个具有挑战性的问题,因为模型需要仅仅依赖于论据的文本来预测准确的话语关系。

The problem would become more manageable if connective/marker cues (i.e., “but”, “so”) are provided to connect the two arguments according to their discourse relations (Qin et al., 2017).

如果根据两个论据的语篇关系,提供连接/标记线索(如“but”,“so”)来连接这两个论据,这个问题将变得更容易处理。

In the example above, it is beneficial for the models to know that “because” can be a connective of the two arguments that is consistent with their discourse relation (i.e., Cause).

在上面的例子中,让模型知道“因为”可以是两个论点的连接词,这与它们的话语关系(即原因)是一致的。

In fact, a human annotator can also benefit from the connectives between arguments when he or she needs to assign discourse relations for pairs of arguments (Qin et al., 2017).

事实上,当一个人需要为一对论据分配话语关系时,他或她也可以从论据之间的连接中获益。

This is demonstrated in the Penn Discourse Treebank dataset (PDTB) (Prasad et al., 2008), a major benchmark dataset for IDRR, where the annotators first inject the connectives between the arguments (called the “implicit connectives”) to aid the relation assignment of the arguments later (Qin et al., 2017).

这在PDTB数据集(IDRR的一个主要基准数据集)中得到了证明,在这里,注释者首先在参数之间插入连接词(称为“隐式连接词”),以帮助以后对参数进行关系赋值。

Motivated by the relevance of connectives for IDRR, some recent work on deep learning has explored methods to transfer the knowledge from the implicit connectives to support discourse relation prediction using the multi-task learning frameworks (Qin et al., 2017; Bai and Zhao, 2018).

基于连接词对IDRR的相关性,近年来的一些深层学习研究探索了利用多任务学习框架从内隐连接词中转移知识以支持语篇关系预测的方法。

The typical approach is to simultaneously predict the discourse relations and the implicit connectives for the input arguments in which the model parameters for the two prediction tasks are shared/tied to allow the knowledge transfer (Liu et al., 2016; Wu et al., 2016; Lan et al., 2017; 4202 Bai and Zhao, 2018).

典型的方法是同时预测两个预测任务的模型参数共享/绑定以允许知识转移的输入参数的语篇关系和隐含连接词。

Unfortunately, such multitask learning models for IDRR share the limitation of failing to exploit the mapping between the implicit connectives and the discourse relations.

不幸的是,这种用于IDRR的多任务学习模型存在着未能充分利用隐含连接词与语篇关系之间的映射的局限性。

In particular, each implicit connective in the PDTB dataset can be naturally mapped into the corresponding discourse relations based on their semantics that can be further employed to transfer the knowledge from the connectives to the relations.

特别地,PDTB数据集中的每个隐含连接词都可以基于语义自然地映射到相应的语篇关系中,这些语义可以进一步用于将知识从连接词转移到关系中。

For instance, in the PDTB dataset, the connective “consequently” uniquely corresponds to the relation cause while the connective “in contrast” can be associated with the relation comparison.

例如,在PDTB数据集中,连接词“因此”与关系原因唯一对应,而连接词“相反”可以与关系比较关联。

In this work, we argue that the knowledge transfer facilitated by such a connective-relation mapping can indeed help to improve the performance of the multi-task learning models for IDRR with deep learning.

在这项工作中,我们认为这种连接词-关系映射促进的知识转移确实有助于提高深度学习的IDRR多任务学习模型的性能。

Consequently, in order to exploit the connective-relation mapping, we propose to embed the implicit connectives and the discourse relations into the same space that would be used to transfer the knowledge between connective and relation predictions via the mapping.

因此,为了开发连接词-关系映射,我们建议将隐含连接词和语篇关系嵌入到同一空间中,通过映射在连接预测和关系预测之间传递知识。

We introduce several mechanisms to encourage both knowledge sharing and representation distinction for the embeddings of the connectives and relations for IDRR.

我们引入了一些机制来鼓励IDRR的连接词和关系的嵌入的知识共享和表示区分。

In the experiments, we extensively demonstrate that the novel embeddings of connectives and relations along with the proposed mechanisms significantly improve the multi-task learning models for IDRR.

在实验中,我们广泛地证明了连接词和关系的新嵌入以及所提出的机制显著地改进了IDRR的多任务学习模型。

We achieve the state-of-the-art performance for IDRR over several settings of the benchmark dataset PDTB.

我们在基准数据集PDTB的几个设置上实现了IDRR的最新性能状态。

Related Work

There have been many research on IDRR since the creation of the PDTB dataset (Prasad et al., 2008).

自PDTB数据集创建以来,对IDRR进行了大量的研究。

The early work has manually designed various features for IDRR (Pitler et al., 2009; Lin et al., 2009; Wang et al., 2010; Zhou et al., 2010; Braud and Denis, 2015; Lei et al., 2018) while the recent approach has applied deep learning to significantly improve the performance of IDRR (Zhang et al., 2015; Ji et al., 2015a; Chen et al., 2016; Liu et al., 2016; Qin et al., 2016; Zhang et al., 2016; Cai and Zhao, 2017; Lan et al., 2017; Wu et al., 2017; Dai and Huang, 2018; Kishimoto et al., 2018).

早期的工作已经为IDRR手工设计了各种特性,而最近的方法已经应用了深度学习来显著提高IDRR的性能。

The most related work to ours in this paper involves the multi-task learning models for IDRR that employ connectives as the auxiliary labels for the prediction of the discourse relations.

本文中涉及到的最相关的工作涉及IDRR的多任务学习模型,该模型采用连接词作为预测语篇关系的辅助标记。

For the feature-based approach, (Zhou et al., 2010) employ a pipelined approach to first predict the connectives and then assign discourse relations accordingly while (Lan et al., 2013) use the connective-relation mapping to automatically generate synthetic data.

Zhou使用流水线方法首先预测连接词,然后相应地分配话语关系,而LAN使用连接关系映射自动生成合成数据。

For the recent work on deep learning for IDRR, (Liu et al., 2016; Wu et al., 2016; Lan et al., 2017; Bai and Zhao, 2018) simultaneously predict connectives and relations assuming the shared parameters of the deep learning models while (Qin et al., 2017) develop adversarial networks to encourage the relation models to mimic the features learned from the connective incorporation.

在最近的IDRR深度学习研究中,liu假设深度学习模型的共享参数,同时预测连接词和关系,而qin开发了对抗性网络,以鼓励关系模型模仿从连接词合并中学习到的特征。

However, none of these work employs embeddings of connectives and relations to transfer knowledge with the connective-relation mapping and deep learning as we do in this work.

然而,这些工作都没有像我们在这项工作中所做的那样,使用连接词和关系的嵌入来通过连接关系映射和深度学习来传递知识。

原文地址:https://www.cnblogs.com/kisetsu/p/11747769.html

时间: 2024-10-31 22:34:17

【ACL2019】利用关联词与关系词的对应性,通过标签嵌入识别隐性话语关系的相关文章

全文检索中近义词、关联词的解决方案

同义词腾讯api 一直想找到一个好的同义词解决方案,在百度和google查找,大家对于这个问题都只是寥寥数语,不愿讲清,我在javaeye搜此类信息也求不到,后来发了个提问贴也只有浏览数而无回复,不知道这是什么原因,无奈之下我只有自己研究. 因为没有其它的解决方案可以借鉴,以下纯为我个人的见解. 我认为所谓近义词.关联词检索不外乎以下三种形式: 1.类似google suggest,用户输入关键字后自动提示功能. 2.假如“奥运会”的关联词是“北京”,用户输入“奥运会”搜索时,将“奥运会”的搜索

比较结构的关联词(二)

一.比较结构的关联词(二) 11. nothing but = nothing else than = nothing less than 不是别的...正是...;完全是:无异于 Genius is nothing else but labor and diligence. 译文:天才不过是劳动加勤奋而已 12.much less = still less 更不,更无 I could not agree to ,much less participate in such proceedings

利用jTessBoxEditor工具进行Tesseract3.02.02样本训练,提高验证码识别率,tesseract训练样本

http://www.bkjia.com/Pythonjc/1131343.html 利用jTessBoxEditor工具进行Tesseract3.02.02样本训练,提高验证码识别率,tesseract训练样本 1.背景 前文已经简要介绍tesseract ocr引擎的安装及基本使用,其中提到使用-l eng参数来限定语言库,可以提高识别准确率及识别效率. 本文将针对某个网站的验证码进行样本训练,形成自己的语言库,来提高验证码识别率. 2.准备工具 tesseract样本训练有一个官方流程说明

如何利用Python词云和wordart可视化工具对朋友圈数据进行可视化

---恢复内容开始--- 2.之后你可能还需要一些字体,如simhei.ttf等,这些字体在网上都有,可以直接进行下载,在做词云的时候会用得到,如下图所示. 这个地方需要注意一下,由于我们的memoent.json文件中是中文字符,如果在open()函数中没有加入encoding='utf-8'的话会导致gbk编码错误,记得将编码加上即可. 4.之后运行程序,得到keys.png图片文件,程序运行的效果如下图所示.可以看到keys.png已经在items.py目录下了. 5.双击keys.png

利用Python sklearn的SVM对AT&T人脸数据进行人脸识别

要求:使用10-fold交叉验证方法实现SVM的对人脸库识别,列出不同核函数参数对识别结果的影响,要求画对比曲线. 使用Python完成,主要参考文献[4],其中遇到不懂的功能函数一个一个的查官方文档和相关资料.其中包含了使用Python画图,遍历文件,读取图片,PCA降维,SVM,交叉验证等知识. 0.数据说明预处理 下载AT&T人脸数据(http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html),解压缩后为40个文件夹

哪些英语用法是普通中国学生最生疏的?

请附上例句和解释,谢谢!如果能分别说一下美国.英国.澳大利亚的本地用法更好. 传送门:你知道哪些中国人普遍生疏但意境很美的英语词汇? - 英语翻译哪些英语母语者常用的词组对于普通中国大学生来说是生疏的? - 英语翻译 谢老珂 ,骨子里是文科生 5360 人赞同 4.14.2016 更新 36-40.(谢谢知友们的赞,留言和私信.这个搬运工的活儿我做得很开心.会继续更新.) 11.21.2015更新 31-35.8.25.2015更新 26-30.8.11.2015更新 23-25.8.4.201

【英语魔法俱乐部——读书笔记】 2 中级句型-复句&合句(Complex Sentences、Compound Sentences)

[英语魔法俱乐部——读书笔记] 2 中级句型-复句&合句(Complex Sentences.Compound Sentences):(2.1)名词从句.(2.2)副词从句.(2.3)关系从句.(2.4)对等连接词与对等从句 2.0 中级句型-复句&合句 2.0.1 复句(Complex Sentences):将一个句子改造成类似名词.形容词.副词的形态,并放到另一个句子中使用,该句子就称为从属从句,另一句则称为主要从句,而合并后的具有主从之分的句子就称为复句.复句的从属从句主要有:名词从

英语中的同位语

英语中的同位语 http://baike.baidu.com/link?url=m0OPtbtNefU-EtIVp-spB0UOi467l9JwEUtWQjW1Ao9yoi9QOPIzwYf7sulq7LgQmVPpBB95lxH9yDIewR2zMa 一个名词(或其它形式)对另一个名词或代词进行修饰,限定或说明,这个名词(或其它形式)就是同位语.同位语与被它限定的词的格式要一致,并常常紧挨在一起. 中文名 同位语 考    点 单词作同位语 用    法 两个以上同一层次的语言单位 连    

【转载】Stanford CoreNLP Typed Dependencies

总结自Stanford typed dependencies manual 原文链接:http://www.jianshu.com/p/5c461cf096c4 依存关系描述句子中词与词之间的各种语法关系.一句句子可以表示成如下的依存关系树. Bell, based in Los Angeles, makes and distributes electronic, computer and building products. CoreNLP中的依存关系有50来种(都是二元的关系),下面总结: