从头学pytorch(十):模型参数访问/初始化/共享

模型参数的访问初始化和共享

参数访问

参数访问:通过下述两个方法.这两个方法是在nn.Module类中实现的.继承自该类的子类也有相同方法.

  • .parameters()
  • .named_parameters()
import torch
from torch import nn
from torch.nn import init

net = nn.Sequential(nn.Linear(4, 3), nn.ReLU(), nn.Linear(3, 1))  # pytorch已进行默认初始化

print(type(net.named_parameters()))
for name, param in net.named_parameters():
    print(name, param.size())

输出

<class 'generator'>
0.weight torch.Size([3, 4])
0.bias torch.Size([3])
2.weight torch.Size([1, 3])
2.bias torch.Size([1])

可见返回的名字自动加上了层数的索引作为前缀。
我们再来访问net中单层的参数。对于使用Sequential类构造的神经网络,我们可以通过方括号[]来访问网络的任一层。索引0表示隐藏层为Sequential实例最先添加的层。

for name, param in net[0].named_parameters():
    print(name, param.size(), type(param))

输出:

weight torch.Size([3, 4]) <class 'torch.nn.parameter.Parameter'>
bias torch.Size([3]) <class 'torch.nn.parameter.Parameter'>

因为这里是单层的所以没有了层数索引的前缀。另外返回的param的类型为torch.nn.parameter.Parameter,其实这是Tensor的子类,和Tensor不同的是如果一个TensorParameter,那么它会自动被添加到模型的参数列表里,来看下面这个例子。

class MyModel(nn.Module):
    def __init__(self, **kwargs):
        super(MyModel, self).__init__(**kwargs)
        self.weight1 = nn.Parameter(torch.rand(20, 20))
        self.weight2 = torch.rand(20, 20)
    def forward(self, x):
        pass

n = MyModel()
for name, param in n.named_parameters():
    print(name)

输出:

weight1

上面的代码中weight1在参数列表中但是weight2却没在参数列表中。

因为ParameterTensor,即Tensor拥有的属性它都有,比如可以根据data来访问参数数值,用grad来访问参数梯度。

weight_0 = list(net[0].parameters())[0]
print(weight_0.data)
print(weight_0.grad) # 反向传播前梯度为None
Y.backward()
print(weight_0.grad)

输出:

tensor([[ 0.2719, -0.0898, -0.2462,  0.0655],
        [-0.4669, -0.2703,  0.3230,  0.2067],
        [-0.2708,  0.1171, -0.0995,  0.3913]])
None
tensor([[-0.2281, -0.0653, -0.1646, -0.2569],
        [-0.1916, -0.0549, -0.1382, -0.2158],
        [ 0.0000,  0.0000,  0.0000,  0.0000]])

参数初始化

通常对各种layer,pytorch已经实现好了默认的比较合理的初始化方式,不需要我们操心.(不同类型的layer具体采样的哪一种初始化方法的可参考源代码)。

如果要自己初始化权重,则遍历net的所有参数,对其执行相应的初始化策略.例如在下面的例子中,我们将权重参数初始化成均值为0、标准差为0.01的正态分布随机数,并依然将偏差参数清零。

for name, param in net.named_parameters():
    if 'weight' in name:
        init.normal_(param, mean=0, std=0.01)
        print(name, param.data)
    elif 'bias' in name:
        init.constant_(param,0)
        print(name, param.data)

上面使用了torch.nn.init中自带的初始化方法,也可以自己实现一个满足自己需求的初始化方法.
我们先来看看PyTorch是怎么实现这些初始化方法的,例如torch.nn.init.normal_

def normal_(tensor, mean=0, std=1):
    with torch.no_grad():
        return tensor.normal_(mean, std)

可以看到这就是一个inplace改变Tensor值的函数,而且这个过程是不记录梯度的。
类似的我们来实现一个自定义的初始化方法。在下面的例子里,我们令权重有一半概率初始化为0,有另一半概率初始化为\([-10,-5]\)和\([5,10]\)两个区间里均匀分布的随机数。

def init_weight_(tensor):
    with torch.no_grad():
        tensor.uniform_(-10, 10)
        tensor *= (tensor.abs() >= 5).float()

for name, param in net.named_parameters():
    if 'weight' in name:
        init_weight_(param)
        print(name, param.data)

由于在init_weight_()中,改变这些param时,声明了torch.no_grad(),所以我们还可以通过改变这些参数的data来改写模型参数值同时不会影响梯度:

for name, param in net.named_parameters():
    if 'bias' in name:
        param.data += 1
        print(name, param.data)

输出:

0.bias tensor([1., 1., 1.])
2.bias tensor([1.])

参数共享

在有些情况下,我们希望在多个层之间共享模型参数。以前的博文提到了如何共享模型参数: Module类的forward函数里多次调用同一个层。此外,如果我们传入Sequential的模块是同一个Module实例的话参数也是共享的,下面来看一个例子:

linear = nn.Linear(1, 1, bias=False)
net = nn.Sequential(linear, linear)
print(net)
for name, param in net.named_parameters():
    init.constant_(param, val=3)
    print(name, param.data)

输出:

Sequential(
  (0): Linear(in_features=1, out_features=1, bias=False)
  (1): Linear(in_features=1, out_features=1, bias=False)
)
0.weight tensor([[3.]])

因为在内存中,这两个线性层其实一个对象:

print(id(net[0]) == id(net[1]))
print(id(net[0].weight) == id(net[1].weight))

输出:

True
True

因为模型参数里包含了梯度,所以在反向传播计算时,这些共享的参数的梯度是累加的:

x = torch.ones(1, 1)
y = net(x).sum()
print(y)
y.backward()
print(net[0].weight.grad) # 单次梯度是3,两次所以就是6

输出:

tensor(9., grad_fn=<SumBackward0>)
tensor([[6.]])

与之比较的是

linear1 = nn.Linear(1, 1, bias=False)
linear2 = nn.Linear(1, 1, bias=False)
net = nn.Sequential(linear1, linear2)
print(net)
for name, param in net.named_parameters():
    init.constant_(param, val=3)
    print(name, param.data)

x = torch.ones(1, 1)
y = net(x).sum()
print(y)
y.backward()
print(net[0].weight.grad) 

输出

Sequential(
  (0): Linear(in_features=1, out_features=1, bias=False)
  (1): Linear(in_features=1, out_features=1, bias=False)
)
0.weight tensor([[3.]])
1.weight tensor([[3.]])

tensor(9., grad_fn=<SumBackward0>)
tensor([[3.]])

可以看到,这里linear1和linear2不是同一个对象.所以net的参数是有两个的.反向传播后,net[0].weight.grad是tensor([[3.]])

原文地址:https://www.cnblogs.com/sdu20112013/p/12134330.html

时间: 2024-08-15 23:18:53

从头学pytorch(十):模型参数访问/初始化/共享的相关文章

从头学pytorch(十五):AlexNet

AlexNet AlexNet是2012年提出的一个模型,并且赢得了ImageNet图像识别挑战赛的冠军.首次证明了由计算机自动学习到的特征可以超越手工设计的特征,对计算机视觉的研究有着极其重要的意义. AlexNet的设计思路和LeNet是非常类似的.不同点主要有以下几点: 激活函数由sigmoid改为Relu AlexNet使用了dropout,LeNet没有使用 AlexNet引入了大量的图像增广,如翻转.裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合 激活函数 relu \[\text

从头学pytorch(十四):lenet

卷积神经网络 在之前的文章里,对28 X 28的图像,我们是通过把它展开为长度为784的一维向量,然后送进全连接层,训练出一个分类模型.这样做主要有两个问题 图像在同一列邻近的像素在这个向量中可能相距较远.它们构成的模式可能难以被模型识别. 对于大尺寸的输入图像,使用全连接层容易造成模型过大.假设输入是高和宽均为1000像素的彩色照片(含3个通道).即使全连接层输出个数仍是256,该层权重参数的形状是\(3,000,000\times 256\),按照参数为float,占用4字节计算,它占用了大

从头学pytorch(十六):VGG NET

VGG AlexNet在Lenet的基础上增加了几个卷积层,改变了卷积核大小,每一层输出通道数目等,并且取得了很好的效果.但是并没有提出一个简单有效的思路. VGG做到了这一点,提出了可以通过重复使?简单的基础块来构建深度学习模型的思路. 论文地址:https://arxiv.org/abs/1409.1556 vgg的结构如下所示: 上图给出了不同层数的vgg的结构.也就是常说的vgg16,vgg19等等. VGG BLOCK vgg的设计思路是,通过不断堆叠3x3的卷积核,不断加深模型深度.

从头学pytorch(五) 多层感知机及其实现

多层感知机 上图所示的多层感知机中,输入和输出个数分别为4和3,中间的隐藏层中包含了5个隐藏单元(hidden unit).由于输入层不涉及计算,图3.3中的多层感知机的层数为2.由图3.3可见,隐藏层中的神经元和输入层中各个输入完全连接,输出层中的神经元和隐藏层中的各个神经元也完全连接.因此,多层感知机中的隐藏层和输出层都是全连接层. 具体来说,给定一个小批量样本\(\boldsymbol{X} \in \mathbb{R}^{n \times d}\),其批量大小为\(n\),输入个数为\(

模型参数的初始化

1.  tf.global_variables_initializer() 可以初始化所有变量. import tensorflow as tfa=tf.Variable(tf.ones((2,3)),name='a')b=tf.Variable(tf.random_normal(shape=(2,3),stddev=0.35),name='b')sess=tf.Session()sess.run(tf.global_variables_initializer())print(sess.run(

pytorch对模型参数初始化

举例说明: Encoder :设计的编码其模型 weights_init(): 用来初始化模型 model.apply():实现初始化 # coding:utf-8 from torch import nn def weights_init(mod): """设计初始化函数""" classname=mod.__class__.__name__ # 返回传入的module类型 print(classname) if classname.find(

从头学pytorch(二十一):全连接网络dense net

DenseNet 论文传送门,这篇论文是CVPR 2017的最佳论文. resnet一文里说了,resnet是具有里程碑意义的.densenet就是受resnet的启发提出的模型. resnet中是把不同层的feature map相应元素的值直接相加.而densenet是将channel维上的feature map直接concat在一起,从而实现了feature的复用.如下所示: 注意,是连接dense block内输出层前面所有层的输出,不是只有输出层的前一层 网络结构 首先实现DenseBl

从头开始学JavaScript (十)——垃圾收集

原文:从头开始学JavaScript (十)--垃圾收集 一.垃圾收集 1.1javascript垃圾收集机制: 自动垃圾收集,执行环境会负责管理代码执行过程中的使用的内存.而在C和C++之类的语言中,开发人员的一项基本任务就是手动跟踪内存的使用情况,这是造成许多问题的一个根源.在编写javascript程序时候,开发人员不用再关心内存使用的问题,所需内存的分配 以及无用的回收完全实现了自动管理. 1.2垃圾收集原理: 找出那些不再继续使用的变量,然后释放其中占用的内存. 垃圾收集器会按照固定的

Mina、Netty、Twisted一起学(十):线程模型

要想开发一个高性能的TCPserver,熟悉所使用框架的线程模型非常重要.MINA.Netty.Twisted本身都是高性能的网络框架,假设再搭配上高效率的代码.才干实现一个高大上的server. 可是假设不了解它们的线程模型.就非常难写出高性能的代码.框架本身效率再高.程序写的太差,那么server总体的性能也不会太高.就像一个电脑,CPU再好.内存小硬盘慢散热差,总体的性能也不会太高. 玩过Android开发的同学会知道,在Android应用中有一个非常重要线程:UI线程(即主线程). UI